Skip to main content

Breast Cancer Classification from Histopathological Images with Separable Convolutional Neural Network and Parametric Rectified Linear Unit

  • Conference paper
  • First Online:
Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2020 (AISI 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1261))

Abstract

The convolutional neural network has achieved great success in the classification of medical imaging including breast cancer classification. Breast cancer is one of the most dangerous cancers impacting women all over the world. In this paper, we propose a deep learning framework. This framework includes the proposed pre-processing phase and the proposed separable convolutional neural network (SCNN) model. Our pre-processing uses patch extraction and data augmentation to enrich the training set and improve the performance. The SCNN model uses separable convolution and parametric rectified linear unit (PRELU) as an activation function. The SCNN shows superior performance and faster than the pre-trained neural network models. The SCNN approach is evaluated using the BACH2018 dataset [1]. We test the performance using 40 random images. The framework achieves accuracy between 97.5% and 100%. The best accuracy is 100% for multi-class and binary class. The framework provides superior classification performance compared to existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aresta, G., Araújo, T., Kwok, S., Chennamsetty, S.S., Safwan, M., Alex, V., Marami, B., Prastawa, M., Chan, M., Donovan, M., Fernandez, G., Zeineh, J., Kohl, M., Walz, C., Ludwig, F., Braunewell, S., Baust, M., Vu, Q.D., To, M.N.N., Aguiar, P.: BACH: grand challenge on breast cancer histology images. Med. Image Anal. 56, 122–139 (2019)

    Article  Google Scholar 

  2. American Cancer Society (2017). https://www.cancer.org

  3. Elmore, J.G., Longton, G.M., Carney, P.A., Geller, B.M., Onega, T., Tosteson, A.N.A., et al.: Diagnostic concordance among pathologists interpreting breast biopsy specimens. JAMA 313(11), 1122–1132 (2015)

    Article  Google Scholar 

  4. Wang, G., Yuan, G., Li, T., Lv, M.: An multi-scale learning network with depthwise separable convolutions. IPSJ Trans. Comput. Vis. Appl. 10(1), 1–8 (2018)

    Article  Google Scholar 

  5. Bayramoglu, N., Kannala, J., Heikkilä, J.: Deep learning for magnification independent breast cancer histopathology image classification. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 2440–2445. IEEE (2016)

    Google Scholar 

  6. Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: Breast cancer histopathological image classification using convolutional neural networks. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 2560–2567. IEEE (2016)

    Google Scholar 

  7. Araujo, T., Aresta, G., Castro, E., Rouco, J., Aguiar, P., Eloy, C., Pol´onia, A., Campilho, A.: Classification of breast cancer histology images using convolutional neural networks. PLOS ONE 12(6), 1–14 (2017)

    Article  Google Scholar 

  8. Chennamsetty, S.S., Safwan, M., Alex, V.: Classification of breast cancer histology image using an ensemble of pre-trained neural networks. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) Image Analysis and Recognition, pp. 804–811. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93000-8_91

    Chapter  Google Scholar 

  9. Kwok, S.: Multiclass classification of breast cancer in whole-slide images. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) Image Analysis and Recognition, pp. 931–940. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93000-8_106

    Chapter  Google Scholar 

  10. Alom, M.Z., Yakopcic, C., Nasrin, M.S., Taha, T.M., Asari, V.K.: Breast cancer classification from histopathological images with inception recurrent residual convolutional neural network. J. Digit. Imaging 32(4), 605617 (2019)

    Article  Google Scholar 

  11. Zhang, Y.D., Pan, C., Chen, X., Wang, F.: Abnormal breast identification by nine-layer convolutional neural network with parametric rectified linear unit and rank-based stochastic pooling. J. Comput. Sci. 27, 57–68 (2018)

    Article  Google Scholar 

  12. Nahid, A.A., Kong, Y.: Involvement of machine learning for breast cancer image classification: a survey. Comput. Math. Meth. Med. (2017)

    Google Scholar 

  13. Golatkar, A., Anand, D., Sethi, A.: Classification of breast cancer histology using deep learning. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) Image Analysis and Recognition. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) LNCS, vol. 10882, pp. 837–844. Springer, Cham (2018)

    Google Scholar 

  14. Rakhlin, A., Shvets, A., Iglovikov, V., Kalinin, A.A.: Deep convolutional neural networks for breast cancer histology image analysis. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) Image Analysis and Recognition. (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) LNCS, vol. 10882, pp. 737–744. Springer, Cham (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heba Gaber , Hatem Mohamed or Mina Ibrahim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gaber, H., Mohamed, H., Ibrahim, M. (2021). Breast Cancer Classification from Histopathological Images with Separable Convolutional Neural Network and Parametric Rectified Linear Unit. In: Hassanien, A.E., Slowik, A., Snášel, V., El-Deeb, H., Tolba, F.M. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2020. AISI 2020. Advances in Intelligent Systems and Computing, vol 1261. Springer, Cham. https://doi.org/10.1007/978-3-030-58669-0_34

Download citation

Publish with us

Policies and ethics