Understanding Quality in Declarative Process Modeling Through the Mental Models of Experts

  • Amine Abbad AndaloussiEmail author
  • Christopher J. Davis
  • Andrea Burattin
  • Hugo A. López
  • Tijs Slaats
  • Barbara Weber
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12168)


Imperative process models have become immensely popular. However, their use is usually limited to rigid and repetitive processes. Considering the inherent flexibility in most processes in the real-world and the increased need for managing knowledge-intensive processes, the adoption of declarative languages becomes more pertinent than ever. While the quality of imperative models has been extensively investigated in the literature, little is known about the dimensions affecting the quality of declarative models. This work takes an advanced stride to investigate the quality of declarative models. Following the theory of Personal Construct Psychology (PCT), our research introduces a novel method within the Business Process Management (BPM) field to explore quality in the eyes of expert modelers. The findings of this work summarize the dimensions defining the quality of declarative models. The outcome shows the potential of PCT as a basis to discover quality dimensions and advances our understanding of quality in declarative process models.


Process model understandability Declarative process models Model quality Personal construct psychology Repertory Grid 


  1. 1.
    Abbad Andaloussi, A., Burattin, A., Slaats, T., Petersen, A.C.M., Hildebrandt, T.T., Weber, B.: Exploring the understandability of a hybrid process design artifact based on DCR graphs. In: Reinhartz-Berger, I., Zdravkovic, J., Gulden, J., Schmidt, R. (eds.) BPMDS/EMMSAD -2019. LNBIP, vol. 352, pp. 69–84. Springer, Cham (2019). Scholar
  2. 2.
    Abbad Andaloussi, A., Davis, C.J., Burattin, A., López, H.A., Slaats, T., Weber, B.: Online repository: used material, collected data and full analysis (2020).
  3. 3.
    Andaloussi, A.A., Burattin, A., Slaats, T., Kindler, E., Weber, B.: On the declarative paradigm in hybrid business process representations: a conceptual framework and a systematic literature study. Inf. Syst. 91, 101505 (2020)CrossRefGoogle Scholar
  4. 4.
    Becker, J., Rosemann, M., von Uthmann, C.: Guidelines of business process modeling. In: van der Aalst, W., Desel, J., Oberweis, A. (eds.) Business Process Management. LNCS, vol. 1806, pp. 30–49. Springer, Heidelberg (2000). Scholar
  5. 5.
    Bera, P., Soffer, P., Parsons, J.: Using eye tracking to expose cognitive processes in understanding conceptual models. MIS Q. 43(4), 1105–1126 (2019)Google Scholar
  6. 6.
    Bernstein, V., Soffer, P.: How does it look? exploring meaningful layout features of process models. In: Persson, A., Stirna, J. (eds.) CAiSE 2015. LNBIP, vol. 215, pp. 81–86. Springer, Cham (2015). Scholar
  7. 7.
    Bryant, A., Charmaz, K.: The SAGE Handbook of Current Developments in Grounded Theory. SAGE Publications, Thousand Oaks (2019)CrossRefGoogle Scholar
  8. 8.
    Charmaz, K.: Constructing Grounded Theory, Introducing Qualitative Methods series. SAGE Publications (2014)Google Scholar
  9. 9.
    Christie, D.F., Menmuir, J.G.: The repertory grid as a tool for reflection in the professional development of practitioners in early education. Teach. Devel. 1(2), 205–218 (1997)CrossRefGoogle Scholar
  10. 10.
    Corradini, F., et al.: A guidelines framework for understandable BPMN models. Data Know. Eng. 113, 129–154 (2018)CrossRefGoogle Scholar
  11. 11.
    Curtis, A.M., Wells, T.M., Higbee, T., Lowry, P.B.: An overview and tutorial of the repertory grid technique in information systems research. Commun. Assoc. Inf. Syst. 23(3), 37–62 (2008)Google Scholar
  12. 12.
    Davis, C.J., Hufnagel, E.M.: Through the eyes of experts: a socio-cognitive perspective on the automation of fingerprint work. MIS Q. 31(4), 681–703 (2007)CrossRefGoogle Scholar
  13. 13.
    Debois, S., Hildebrandt, T.T., Slaats, T.: Replication, refinement & reachability: complexity in dynamic condition-response graphs. Acta Informatica 55(6), 489–520 (2017). Scholar
  14. 14.
    van Der Aalst, W.M., Ter Hofstede, A.H., Kiepuszewski, B., Barros, A.P.: Workflow patterns. Distrib. Parallel Database 14(1), 5–51 (2003)CrossRefGoogle Scholar
  15. 15.
    Elgammal, A., Turetken, O., van den Heuvel, W.J., Papazoglou, M.: Formalizing and appling compliance patterns for business process compliance. Softw. Syst. Model. 15(1), 119–146 (2014). Scholar
  16. 16.
    Fahland, D., et al.: Declarative versus imperative process modeling languages: the issue of understandability. In: Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Ukor, R. (eds.) BPMDS/EMMSAD -2009. LNBIP, vol. 29, pp. 353–366. Springer, Heidelberg (2009). Scholar
  17. 17.
    Figl, K.: Comprehension of procedural visual business process models. Bus. Inf. Syst. Eng. 59(1), 41–67 (2016). Scholar
  18. 18.
    Forrester, J.W.: Industrial dynamics. Pegasus Communications (1961)Google Scholar
  19. 19.
    Groesser, S.N., Schaffernicht, M.: Mental models of dynamic systems: taking stock and looking ahead. Syst. Dyn. Rev. 28(1), 46–68 (2012)CrossRefGoogle Scholar
  20. 20.
    Haisjackl, C., et al.: Understanding declare models: strategies, pitfalls, empirical results. Softw. Syst. Model. 15(2), 325–352 (2016)CrossRefGoogle Scholar
  21. 21.
    Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Nested dynamic condition response graphs. In: Arbab, F., Sirjani, M. (eds.) FSEN 2011. LNCS, vol. 7141, pp. 343–350. Springer, Heidelberg (2012). Scholar
  22. 22.
    Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based workflow as distributed dynamic condition response graphs. EPTCS 69, 59–73 (2011)CrossRefGoogle Scholar
  23. 23.
    Johnson-Laird, P.N.: Mental models and deduction. Trends Cogn. Sci. 5(10), 434–442 (2001)CrossRefGoogle Scholar
  24. 24.
    Kelly, G.A.: The psychology of personal constructs Norton. New York (1955)Google Scholar
  25. 25.
    King, N., Horrocks, C., Brooks, J.: Interviews in Qualitative Research. SAGE Publications, Thousand Oaks (2018)Google Scholar
  26. 26.
    Krogstie, J.: Model-Based Development and Evolution of Information Systems: A Quality Approach. Springer Science & Business Media, Heidelberg (2012). Scholar
  27. 27.
    Krogstie, J.: Some future directions for business process modeling. Quality in Business Process Modeling, pp. 227–239. Springer, Cham (2016). Scholar
  28. 28.
    Lindland, O.I., Sindre, G., Solvberg, A.: Understanding quality in conceptual modeling. IEEE Softw. 11(2), 42–49 (1994)CrossRefGoogle Scholar
  29. 29.
    Mendling, J.: Metrics for Process Models. LNBIP, vol. 6. Springer, Heidelberg (2008). Scholar
  30. 30.
    Mendling, J., Reijers, H.A., van der Aalst, W.M.: Seven process modeling guidelines (7PMG). Inf. Softw. Technol. 52(2), 127–136 (2010)CrossRefGoogle Scholar
  31. 31.
    Moody, D.: The “physics” of notations: toward a scientific basis for constructing visual notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756–779 (2009)CrossRefGoogle Scholar
  32. 32.
    Moreno-Montes de Oca, I., Snoeck, M.: Pragmatic guidelines for business process modeling (2014). Available at SSRN 2592983Google Scholar
  33. 33.
    Phythian, G.J., King, M.: Developing an expert support system for tender enquiry evaluation: a case study. Eur. J. Oper. Res. 56(1), 15–29 (1992)CrossRefGoogle Scholar
  34. 34.
    Pesic, M.: Constraint-based workflow management systems: shifting control to users. Ph.D. thesis, TU Eindhoven (2008)Google Scholar
  35. 35.
    Reijers, H.A., Mendling, J., Recker, J.: Business process quality management. In: vom Brocke, J., Rosemann, M. (eds.) Handbook on Business Process Management 1. IHIS, pp. 167–185. Springer, Heidelberg (2015). Scholar
  36. 36.
    Slaats, T., Mukkamala, R.R., Hildebrandt, T., Marquard, M.: Exformatics declarative case management workflows as DCR graphs. In: BPM Proceedings (2013)Google Scholar
  37. 37.
    Zugal, S.: Applying cognitive psychology for improving the creation, understanding and maintenance of business process models. Ph.D. thesis, University of Innsbruck (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Amine Abbad Andaloussi
    • 1
    Email author
  • Christopher J. Davis
    • 2
  • Andrea Burattin
    • 1
  • Hugo A. López
    • 3
    • 5
  • Tijs Slaats
    • 3
  • Barbara Weber
    • 4
  1. 1.Software and Process EngineeringTechnical University of DenmarkLyngbyDenmark
  2. 2.University of South FloridaSaint PetersburgUSA
  3. 3.Department of Computer ScienceUniversity of CopenhagenKøbenhavnDenmark
  4. 4.Institute of Computer ScienceUniversity of St. GallenSt. GallenSwitzerland
  5. 5.DCR Solutions A/SCopenhagenDenmark

Personalised recommendations