Skip to main content

Analyzing Process Concept Drifts Based on Sensor Event Streams During Runtime

Part of the Lecture Notes in Computer Science book series (LNISA,volume 12168)

Abstract

Business processes have to adapt to constantly changing requirements at a large scale due to, e.g., new regulations, and at a smaller scale due to, e.g., deviations in sensor event streams such as warehouse temperature in manufacturing or blood pressure in health care. Deviations in the process behavior during runtime can be detected from process event streams as so called concept drifts. Existing work has focused on concept drift detection so far, but has neglected why the drift occurred. To close this gap, this paper provides online algorithms to analyze the root cause for a concept drift using sensor event streams. These streams are typically gathered externally, i.e., separated from the process execution, and can be understood as time sequences. Supporting domain experts in assessing concept drifts through their root cause facilitates process optimization and evolution. The feasibility of the algorithms is shown based on a prototypical implementation. Moreover, the algorithms are evaluated based on a real-world data set from manufacturing.

Keywords

  • Online process mining
  • Concept drift
  • Sensor event stream
  • Root cause analysis
  • Time sequence
  • Dynamic Time Warping

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-58666-9_12
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-58666-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Notes

  1. 1.

    http://cpee.org/.

  2. 2.

    https://www.acdp.at/.

  3. 3.

    https://www.iso.org/standard/51330.html.

  4. 4.

    https://www.keyence.com/products/measure/micrometer/ls-9000/index.jsp.

  5. 5.

    https://www.microvu.com/products/vertex.html.

  6. 6.

    https://www.keyence.com/products/measure/micrometer/ls-9000/index.jsp.

  7. 7.

    http://gruppe.wst.univie.ac.at/data/timesequence.zip.

  8. 8.

    http://xes-standard.org/.

References

  1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

    CrossRef  Google Scholar 

  2. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: KDD Workshop, Seattle, WA, vol. 10, pp. 359–370 (1994)

    Google Scholar 

  3. Borkowski, M., Fdhila, W., Nardelli, M., Rinderle-Ma, S., Schulte, S.: Event-based failure prediction in distributed business processes. Inf. Syst. 81, 220–235 (2019)

    CrossRef  Google Scholar 

  4. Bose, R.J.C., Van Der Aalst, W.M., Zliobaite, I., Pechenizkiy, M.: Dealing with concept drifts in process mining. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 154–171 (2014)

    CrossRef  Google Scholar 

  5. Burattin, A., Sperduti, A., van der Aalst, W.M.: Control-flow discovery from event streams. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 2420–2427. IEEE (2014)

    Google Scholar 

  6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  7. Dunkl, R., Rinderle-Ma, S., Grossmann, W., Anton Fröschl, K.: A method for analyzing time series data in process mining: application and extension of decision point analysis. In: Nurcan, S., Pimenidis, E. (eds.) CAiSE 2014. LNBIP, vol. 204, pp. 68–84. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19270-3_5

    CrossRef  Google Scholar 

  8. Ehrendorfer, M., Fassmann, J., Mangler, J., Rinderle-Ma, S.: Conformance checking and classification of manufacturing log data. In: Business Informatics, pp. 569–577 (2019)

    Google Scholar 

  9. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in time-series databases. ACM 23, 419–429 (1994)

    Google Scholar 

  10. Grossmann, W., Rinderle-Ma, S.: Fundamentals of Business Intelligence. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46531-8

    CrossRef  Google Scholar 

  11. Junkui, L., Yuanzhen, W.: Early abandon to accelerate exact dynamic time warping. Int. Arab J. Inf. Technol. (IAJIT) 6(2), 144–152 (2009)

    Google Scholar 

  12. Kammerer, K., Hoppenstedt, B., Pryss, R., Stökler, S., Allgaier, J., Reichert, M.: Anomaly detections for manufacturing systems based on sensor data - insights into two challenging real-world production settings. Sensors 19(24), 5370 (2019)

    CrossRef  Google Scholar 

  13. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38697-8_17

    CrossRef  Google Scholar 

  14. Maaradji, A., Dumas, M., Rosa, M.L., Ostovar, A.: Detecting sudden and gradual drifts in business processes from execution traces. IEEE Trans. Knowl. Data Eng. 29(10), 2140–2154 (2017)

    CrossRef  Google Scholar 

  15. Maggi, F.M., Burattin, A., Cimitile, M., Sperduti, A.: Online process discovery to detect concept drifts in LTL-based declarative process models. In: Meersman, R., et al. (eds.) OTM 2013. LNCS, vol. 8185, pp. 94–111. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41030-7_7

    CrossRef  Google Scholar 

  16. Mottola, L., et al.: makeSense: simplifying the integration of wireless sensor networks into business processes. IEEE Trans. Softw. Eng. 45(6), 576–596 (2019)

    CrossRef  Google Scholar 

  17. Petitjean, F., Ketterlin, A., Gançarski, P.: A global averaging method for dynamic time warping, with applications to clustering. Pattern Recogn. 44(3), 678–693 (2011)

    CrossRef  Google Scholar 

  18. Salvador, S., Chan, P.: Toward accurate dynamic time warping in linear time and space. Intell. Data Anal. 11(5), 561–580 (2007)

    CrossRef  Google Scholar 

  19. Stertz, F., Rinderle-Ma, S.: Process histories - detecting and representing concept drifts based on event streams. In: Panetto, H., Debruyne, C., Proper, H.A., Ardagna, C.A., Roman, D., Meersman, R. (eds.) OTM 2018. LNCS, vol. 11229, pp. 318–335. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02610-3_18

    CrossRef  Google Scholar 

  20. Stertz, F., Rinderle-Ma, S.: Detecting and identifying data drifts in process event streams based on process histories. In: Cappiello, C., Ruiz, M. (eds.) CAiSE 2019. LNBIP, vol. 350, pp. 240–252. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21297-1_21

    CrossRef  Google Scholar 

  21. Stertz, F., Rinderle-Ma, S., Mangler, J.: Data set containing process execution log data with time sequence information for conference proceeding 2020 paper: analyzing process concept drifts based on sensor event streams during runtime. https://doi.org/10.6084/m9.figshare.12472634

  22. Tavenard, R.: tslearn documentation (2018)

    Google Scholar 

  23. The Hackett Group: Enabling business process change (2019). https://www.thehackettgroup.com/business-process-change/

  24. Wei, L., Keogh, E., Van Herle, H., Mafra-Neto, A.: Atomic wedgie: efficient query filtering for streaming time series. In: Fifth IEEE International Conference on Data Mining (ICDM 2005), pp. 8–pp. IEEE (2005)

    Google Scholar 

  25. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23(1), 69–101 (1996). https://doi.org/10.1023/A:1018046501280

    CrossRef  Google Scholar 

  26. Yeshchenko, A., Di Ciccio, C., Mendling, J., Polyvyanyy, A.: Comprehensive process drift detection with visual analytics. In: Laender, A.H.F., Pernici, B., Lim, E.-P., de Oliveira, J.P.M. (eds.) ER 2019. LNCS, vol. 11788, pp. 119–135. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33223-5_11

    CrossRef  Google Scholar 

  27. van Zelst, S., van Dongen, B., van der Aalst, W.: Event stream-based process discovery using abstract representations. Knowl. Inf. Syst. 54(2), 407–435 (2018). https://doi.org/10.1007/s10115-017-1060-2

    CrossRef  Google Scholar 

Download references

Acknowledgment

This work has been partly funded by the Austrian Research Promotion Agency (FFG) via the “Austrian Competence Center for Digital Production” (CDP) under the contract number 854187. This work has been supported by the Pilot Factory Industry 4.0, Seestadtstrasse 27, Vienna, Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Stertz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Stertz, F., Rinderle-Ma, S., Mangler, J. (2020). Analyzing Process Concept Drifts Based on Sensor Event Streams During Runtime. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds) Business Process Management. BPM 2020. Lecture Notes in Computer Science(), vol 12168. Springer, Cham. https://doi.org/10.1007/978-3-030-58666-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58666-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58665-2

  • Online ISBN: 978-3-030-58666-9

  • eBook Packages: Computer ScienceComputer Science (R0)