Fallback Approximated Constrained Optimal Output Feedback Control Under Variable Parameters

Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 695)


Safety critical control problems often require the availability of fallback strategies, in case of failure of the main control scheme, sensors or actuators. Those controllers should provide safe operation or emergency shut down of the system under all circumstance. They should also be able to operate subject to reduced information, and limited computation power. We propose a verifiable and efficiently implementable output feedback controller based on an approximated explicit solution of a constrained optimal control problem. The control law is derived by solving an infinite horizon optimal control problem utilizing Al’brekht’s Method to obtain power series expansions. The feedback control law is a polynomial in terms of the measurements and estimated parameters, thus the online evaluation can be done efficiently. We provide conditions for convergence and existence of the optimal control law and the corresponding value function. Simulation results for the control of a non-linear quadcopter example show the effectiveness of the proposed strategy.


Approximated optimal control Non-linear adaptive control Al’brekht’s method Parametric uncertainties Sensor failure 


  1. 1.
    Hu, H., Liu, L., Wang, Y., Cheng, Z., Luo, Q.: Active fault-tolerant attitude tracking control with adaptive gain for spacecrafts. Aerospace Sci. Technol., 105706 (2020)Google Scholar
  2. 2.
    Mousavi, M., Rahnavard, M., Haddad, S.: Observer based fault reconstruction schemes using terminal sliding modes. Int. J. Control 93(4), 1–8 (2018)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Cristofaro, A., Johansen, T.A.: Fault tolerant control allocation using unknown input observers. Automatica 50(7), 1891–1897 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hu, Q., Niu, G., Wang, C.: Spacecraft attitude fault-tolerant control based on iterative learning observer and control allocation. Aerosp. Sci. Technol. 75, 245–253 (2018)CrossRefGoogle Scholar
  5. 5.
    Yin, S., Xiao, B., Ding, S.X., Zhou, D.: A review on recent development of spacecraft attitude fault tolerant control system. IEEE Trans. Ind. Electron. 63(5), 3311–3320 (2016)CrossRefGoogle Scholar
  6. 6.
    Wang, X., Sun, S., van Kampen, E.J., Chu, Q.: Quadrotor fault tolerant incremental sliding mode control driven by sliding mode disturbance observers. Aerosp. Sci. Technol. 87, 417–430 (2019)CrossRefGoogle Scholar
  7. 7.
    Tian, B., Yin, L., Wang, H.: Finite-time reentry attitude control based on adaptive multivariable disturbance compensation. IEEE Trans. Ind. Electron. 62(9), 5889–5898 (2015)CrossRefGoogle Scholar
  8. 8.
    Edwards, C., Shtessel, Y.: Adaptive dual-layer super-twisting control and observation. Int. J. Control 89(9), 1759–1766 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Pan, Z., Ezal, K., Krener, A.J., Kokotovic, P.V.: Backstepping design with local optimality matching. IEEE Trans. Autom. Control 46(7), 1014–1027 (2001)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Margaliot, M., Langholz, G.: Some nonlinear optimal control problems with closed-form solutions. Int. J. Rob. Nonlinear Control IFAC-Affiliated J. 11(14), 1365–1374 (2001)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Xiao, B., Huo, M., Yang, X., Zhang, Y.: Fault-tolerant attitude stabilization for satellites without rate sensor. IEEE Trans. Ind. Electron. 62(11), 7191–7202 (2015)CrossRefGoogle Scholar
  12. 12.
    Xin, M., Balakrishnan, S.: A new method for suboptimal control of a class of non-linear systems. Optimal Control Appl. Methods 26(2), 55–83 (2005)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dalamagkidis, K., Valavanis, K.P., Piegl, L.A.: Nonlinear model predictive control with neural network optimization for autonomous autorotation of small unmanned helicopters. IEEE Trans. Control Syst. Technol. 19(4), 818–831 (2010)CrossRefGoogle Scholar
  14. 14.
    Liu, Y., Zhang, H., Yu, R., Qu, Q.: Data-driven optimal tracking control for discrete-time systems with delays using adaptive dynamic programming. J. Franklin Inst. 355(13), 5649–5666 (2018)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kiumarsi, B., Lewis, F.L.: Actor–critic-based optimal tracking for partially unknown nonlinear discrete-time systems. IEEE Trans. Neural Netw. Learn. Syst. 26(1), 140–151 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Al’brekht, E.: On the optimal stabilization of nonlinear systems. Appl. Math. Mech. 25(5), 836–844 (1961)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Garrard, W.L., Enns, D.F., Antony Snell, S.: Nonlinear feedback control of highly manoeuvrable aircraft. Int. J. Control 56(4), 799–812 (1992)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Krener, A.: Adaptive horizon model predictive control. IFAC-PapersOnLine 51(13), 31–36 (2018a)CrossRefGoogle Scholar
  19. 19.
    Krener, A.: Adaptive horizon model predictive regulation. IFAC-PapersOnLine 51(20), 54–59 (2018b)CrossRefGoogle Scholar
  20. 20.
    Lucia, S., Rumschinski, P., Krener, A., Findeisen, R.: Improved design of nonlinear model predictive controllers. IFAC-PapersOnLine 48(23), 254–259 (2015)CrossRefGoogle Scholar
  21. 21.
    Ibrahim, M., Kallies, C., Findeisen, R.: Learning-supported approximated optimal control for autonomous vehicles in the presence of state dependent uncertainties. In: Proceedings of the 19th European Control Conference, Saint Petersburg, Russia (2020)Google Scholar
  22. 22.
    Kallies, C., Ibrahim, M., Findeisen, R.: Approximated explicit infinite horizon constraint optimal control for systems with parametric uncertainties. In: Proceedings of 21st IFAC World Congress. Berlin, Germany (2020)Google Scholar
  23. 23.
    Feller, C., Ebenbauer, C.: Input-to-state stability properties of relaxed barrier function based MPC. IFAC-PapersOnLine 48(23), 302–307 (2015)CrossRefGoogle Scholar
  24. 24.
    Wu, Z., Christofides, P.D.: Optimizing process economics and operational safety via economic MPC using barrier functions and recurrent neural network models. Chem. Eng. Res. Des. 152, 455–465 (2019). Scholar
  25. 25.
    Köhler, J., Soloperto, R., Müller, M.A., Allgöwer, F.: A computationally efficient robust model predictive control framework for uncertain nonlinear systems. Submitted to IEEE Trans. Autom. Control (2019)Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.Laboratory for Systems Theory and Automatic ControlOtto von Guericke UniversityMagdeburgGermany

Personalised recommendations