Skip to main content

Diverse and Admissible Trajectory Forecasting Through Multimodal Context Understanding

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12356))

Abstract

Multi-agent trajectory forecasting in autonomous driving requires an agent to accurately anticipate the behaviors of the surrounding vehicles and pedestrians, for safe and reliable decision-making. Due to partial observability in these dynamical scenes, directly obtaining the posterior distribution over future agent trajectories remains a challenging problem. In realistic embodied environments, each agent’s future trajectories should be both diverse since multiple plausible sequences of actions can be used to reach its intended goals, and admissible since they must obey physical constraints and stay in drivable areas. In this paper, we propose a model that synthesizes multiple input signals from the multimodal world|the environment’s scene context and interactions between multiple surrounding agents|to best model all diverse and admissible trajectories. We compare our model with strong baselines and ablations across two public datasets and show a significant performance improvement over previous state-of-the-art methods. Lastly, we offer new metrics incorporating admissibility criteria to further study and evaluate the diversity of predictions. Codes are at: https://github.com/kami93/CMU-DATF.

J. Seo and M. Bhat—Authors contributed equally.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social lSTM: human trajectory prediction in crowded spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961–971 (2016)

    Google Scholar 

  2. Ballan, L., Castaldo, F., Alahi, A., Palmieri, F., Savarese, S.: Knowledge transfer for scene-specific motion prediction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision – ECCV 2016. Lecture Notes in Computer Science, vol. 9905, pp. 697–713. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_42

    Chapter  Google Scholar 

  3. Bansal, M., Krizhevsky, A., Ogale, A.: Chauffeurnet: learning to drive by imitating the best and synthesizing the worst. arXiv preprint arXiv:1812.03079 (2018)

  4. Bernstein, D.S., So, W.: Some explicit formulas for the matrix exponential. IEEE Trans. Autom. Control 38(8), 1228–1232 (1993)

    Article  MathSciNet  Google Scholar 

  5. Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11621–11631 (2020)

    Google Scholar 

  6. Casas, S., Luo, W., Urtasun, R.: IntentNet: learning to predict intention from raw sensor data. In: Conference on Robot Learning, pp. 947–956 (2018)

    Google Scholar 

  7. Chang, M.F., et al.: Argoverse: 3D tracking and forecasting with rich maps. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8748–8757 (2019)

    Google Scholar 

  8. Deo, N., Trivedi, M.M.: Convolutional social pooling for vehicle trajectory prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1468–1476 (2018)

    Google Scholar 

  9. Fernando, T., Denman, S., Sridharan, S., Fookes, C.: Soft + hardwired attention: an lstm framework for human trajectory prediction and abnormal event detection. Neural networks 108, 466–478 (2018)

    Article  Google Scholar 

  10. Gindele, T., Brechtel, S., Dillmann, R.: Learning driver behavior models from traffic observations for decision making and planning. IEEE Intell. Transp. Syst. Mag. 7(1), 69–79 (2015)

    Article  Google Scholar 

  11. Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: socially acceptable trajectories with generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2255–2264 (2018)

    Google Scholar 

  12. Huang, X., et al.: DiversityGAN: diversity-aware vehicle motion prediction via latent semantic sampling. IEEE Robot. Autom. Lett. (2020)

    Google Scholar 

  13. Kim, B., Kang, C.M., Kim, J., Lee, S.H., Chung, C.C., Choi, J.W.: Probabilistic vehicle trajectory prediction over occupancy grid map via recurrent neural network. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 399–404. IEEE (2017)

    Google Scholar 

  14. Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow. In: Advances in Neural Information Processing systems. pp. 4743–4751 (2016)

    Google Scholar 

  15. Kooij, J.F.P.: Context-based pedestrian path prediction. In: Fleet, D., Pajdla, T., Tuytelaars, T. (eds.) European Conference on Computer Vision. Lecture Notes in Computer Science, vol. 8694, pp. 618–633. Springer, Cham (2014)

    Google Scholar 

  16. Krajewski, R., Bock, J., Kloeker, L., Eckstein, L.: The highd dataset: a drone dataset of naturalistic vehicle trajectories on German highways for validation of highly automated driving systems. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 2118–2125. IEEE (2018)

    Google Scholar 

  17. Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H., Chandraker, M.: Desire: distant future prediction in dynamic scenes with interacting agents. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 336–345 (2017)

    Google Scholar 

  18. Ma, Y., Zhu, X., Zhang, S., Yang, R., Wang, W., Manocha, D.: Trafficpredict: Trajectory prediction for heterogeneous traffic-agents. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 6120–6127 (2019)

    Google Scholar 

  19. Park, S.H., Kim, B., Kang, C.M., Chung, C.C., Choi, J.W.: Sequence-to-sequence prediction of vehicle trajectory via LSTM encoder-decoder architecture. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 1672–1678. IEEE (2018)

    Google Scholar 

  20. Rezende, D.J., Mohamed, S.: Variational inference with normalizing flows. arXiv preprint arXiv:1505.05770 (2015)

  21. Rhinehart, N., Kitani, K.M., Vernaza, P.: R2p2: A reparameterized pushforward policy for diverse, precise generative path forecasting. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 772–788 (2018)

    Google Scholar 

  22. Rhinehart, N., McAllister, R., Kitani, K., Levine, S.: Precog: Prediction conditioned on goals in visual multi-agent settings. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2821–2830 (2019)

    Google Scholar 

  23. Rudenko, A., Palmieri, L., Herman, M., Kitani, K.M., Gavrila, D.M., Arras, K.O.: Human motion trajectory prediction: A survey. The International Journal of Robotics Research p. 0278364920917446 (2019)

    Google Scholar 

  24. Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N., Rezatofighi, H., Savarese, S.: Sophie: An attentive gan for predicting paths compliant to social and physical constraints. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1349–1358 (2019)

    Google Scholar 

  25. Schulz, J., Hubmann, C., Löchner, J., Burschka, D.: Interaction-aware probabilistic behavior prediction in urban environments. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 3999–4006. IEEE (2018)

    Google Scholar 

  26. Tang, C., Salakhutdinov, R.R.: Multiple futures prediction. In: Advances in Neural Information Processing Systems. pp. 15398–15408 (2019)

    Google Scholar 

  27. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. In: Advances in neural information processing systems. pp. 5998–6008 (2017)

    Google Scholar 

  28. Vemula, A., Muelling, K., Oh, J.: Social attention: Modeling attention in human crowds. In: 2018 IEEE international Conference on Robotics and Automation (ICRA). pp. 1–7. IEEE (2018)

    Google Scholar 

  29. Verlet, L.: Computer” experiments” on classical fluids. i. thermodynamical properties of lennard-jones molecules. Physical review 159(1), 98 (1967)

    Google Scholar 

  30. Xie, G., Gao, H., Qian, L., Huang, B., Li, K., Wang, J.: Vehicle trajectory prediction by integrating physics-and maneuver-based approaches using interactive multiple models. IEEE Transactions on Industrial Electronics 65(7), 5999–6008 (2017)

    Article  Google Scholar 

  31. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., Bengio, Y.: Show, attend and tell: Neural image caption generation with visual attention. In: International conference on machine learning. pp. 2048–2057 (2015)

    Google Scholar 

  32. Yuan, Y., Kitani, K.M.: Diverse trajectory forecasting with determinantal point processes. In: International Conference on Learning Representations (2020)

    Google Scholar 

  33. Zhao, T., Xu, Y., Monfort, M., Choi, W., Baker, C., Zhao, Y., Wang, Y., Wu, Y.N.: Multi-agent tensor fusion for contextual trajectory prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 12126–12134 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Technology Innovation Program under Grant 10083646 (Development of Deep Learning-Based Future Prediction and Risk Assessment Technology considering Inter-vehicular Interaction in Cut-in Scenario), funded by the Ministry of Trade, Industry, and Energy, South Korea. We also acknowledge the anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Hyeon Park .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2434 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Park, S.H. et al. (2020). Diverse and Admissible Trajectory Forecasting Through Multimodal Context Understanding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12356. Springer, Cham. https://doi.org/10.1007/978-3-030-58621-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58621-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58620-1

  • Online ISBN: 978-3-030-58621-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics