Skip to main content

Explainable Face Recognition

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12356))

Abstract

Explainable face recognition (XFR) is the problem of explaining the matches returned by a facial matcher, in order to provide insight into why a probe was matched with one identity over another. In this paper, we provide the first comprehensive benchmark and baseline evaluation for XFR. We define a new evaluation protocol called the “inpainting game”, which is a curated set of 3648 triplets (probe, mate, nonmate) of 95 subjects, which differ by synthetically inpainting a chosen facial characteristic like the nose, eyebrows or mouth creating an inpainted nonmate. An XFR algorithm is tasked with generating a network attention map which best explains which regions in a probe image match with a mated image, and not with an inpainted nonmate for each triplet. This provides ground truth for quantifying what image regions contribute to face matching. Finally, we provide a comprehensive benchmark on this dataset comparing five state-of-the-art XFR algorithms on three facial matchers. This benchmark includes two new algorithms called subtree EBP and Density-based Input Sampling for Explanation (DISE) which outperform the state-of-the-art XFR by a wide margin.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bach, S., Binder, A., Montavon, G., Klauschen, F., Muller, K.-R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), e0130140 (2015)

    Article  Google Scholar 

  2. Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.: Network dissection: quantifying interpretability of deep visual representations. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3319–3327 (2017)

    Google Scholar 

  3. Buolamwini, J., Gebru, T.: Gender shades: intersectional accuracy disparities in commercial gender classification. In: Friedler, S.A., Wilson, C., (eds) Proceedings of the 1st Conference on Fairness, Accountability and Transparency, Proceedings of Machine Learning Research, New York, NY, USA, 23–24 February 2018, vol. 81, pp. 77–91. PMLR (2018)

    Google Scholar 

  4. Cao, C., et al.: Look and think twice: capturing top-down visual attention with feedback convolutional neural networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2956–2964 (2015)

    Google Scholar 

  5. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2: a dataset for recognising faces across pose and age. In: International Conference on Automatic Face and Gesture Recognition (2018)

    Google Scholar 

  6. Castanon, G., Byrne., J.: Visualizing and quantifying discriminative features for face recognition. In: International Conference on Automatic Face and Gesture Recognition (2018)

    Google Scholar 

  7. Crispell, D., Bazik, M.: Pix2Face: direct 3D face model estimation. In: 2017 IEEE International Conference on Computer Vision Workshop (ICCVW), pp. 2512–2518, October 2017

    Google Scholar 

  8. Dabkowski, P., Gal, Y.: Real time image saliency for black box classifiers. In: Advances in Neural Information Processing Systems, pp. 6967–6976 (2017)

    Google Scholar 

  9. Dhar, P., Bansal, A., Castillo, C.D., Gleason, J., Phillips, P.J., Chellappa, R.: How are attributes expressed in face DCNNs? ArXiv, abs/1910.05657 (2019)

    Google Scholar 

  10. Duchaine, B., Nakayama, K.: The Cambridge face memory test: results for neurologically intact individuals and an investigation of its validity using inverted face stimuli and prosopagnosic participants. Neuropsychologia 44, 576–585 (2006)

    Article  Google Scholar 

  11. Facial Identification Scientific Working Group. FISWG Guidelines for Facial Comparison Methods. In: FISWG Standards Version 1.0 - 2012–02-02 (2012)

    Google Scholar 

  12. Fong, R., Vedaldi, A.: Interpretable Explanations of Black Boxes by Meaningful Perturbation. arXiv preprint (2017)

    Google Scholar 

  13. Garvie, C., Bedoya, A., Frankle, J.: The perpetual line-up: unregulated police face recognition in America. Technical Report, Georgetown University Law School (2018)

    Google Scholar 

  14. Grimm, C., Arumugam, D., Karamcheti, S., Abel, D., Wong, L.L., Littman, M.L.: Latent attention networks. arXiv:1706.00536v1 (2017)

  15. Grother, P., Ngan, M., Hanaoka, K.: Face recognition vendor test (FRVT) Part 3: demographic effects. In: NISTIR 8280 (2019)

    Google Scholar 

  16. Hu, R., Andreas, J., Darrell, T., Saenko, K.: Explainable neural computation via stack neural module networks. In: ECCV (2018)

    Google Scholar 

  17. Kindermans, P.-J., et al.: Learning how to explain neural networks: patternnet and pattern attribution. arXiv preprint arXiv:1705.05598 (2017)

  18. Li, H., Mueller, K., Chen, X.: Beyond saliency: understanding convolutional neural networks from saliency prediction on layer-wise relevance propagation. Image Vis. Comput. 83–84, 70–86 (2017)

    Google Scholar 

  19. Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  20. Maze, B., et al.: IARPA Janus benchmark-c: face dataset and protocol. In: 2018 International Conference on Biometrics (ICB), pp. 158–165. IEEE (2018)

    Google Scholar 

  21. Nguyen, A.M., Dosovitskiy, A., Yosinski, J., Brox, T., Clune, J.: Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. In: NIPS (2016)

    Google Scholar 

  22. Parkhi, O., Vedaldi, A., Zisserman, A.: Deep face recognition. In: BMVC (2015)

    Google Scholar 

  23. Petsiuk, V., Das, A., Saenko, K.: Rise: randomized input sampling for explanation of black-box models. In: British Machine Vision Conference (BMVC) (2018)

    Google Scholar 

  24. Phillips, P.J., et al.: Face recognition accuracy of forensic examiners, superrecognizers, and face recognition algorithms. In: Proceedings of the National Academy of Sciences of the United States of America (2018)

    Google Scholar 

  25. Raji, I.D., Buolamwini, J.: Actionable auditing: investigating the impact of publicly naming biased performance results of commercial AI products. In: AIES 2019 (2019)

    Google Scholar 

  26. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you?: Explaining the predictions of any classifier. In: KDD 2016 (2016)

    Google Scholar 

  27. RichardWebster, B., Kwon, S.Y., Clarizio, C., Anthony, S.E., Scheirer, W.J.: Visual psychophysics for making face recognition algorithms more explainable. In: European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  28. Samek, W., Binder, A., Montavon, G., Lapuschkin, S., Müller, K.-R.: Evaluating the visualization of what a deep neural network has learned. IEEE Trans. Neural Netw. Learn. Syst. 28, 2660–2673 (2015)

    Article  MathSciNet  Google Scholar 

  29. Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K. (eds.): Explaining and Visualizing Deep Learning Explainable AI: Interpreting. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-28954-6

    Book  Google Scholar 

  30. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In CVPR (2015)

    Google Scholar 

  31. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 618–626 (2016)

    Google Scholar 

  32. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. CoRR, abs/1312.6034 (2013)

    Google Scholar 

  33. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. In: ICLR, p. 1 (2014)

    Google Scholar 

  34. Stylianou, A., Souvenir, R., Pless, R.: Visualizing deep similarity networks. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 2029–2037. IEEE (2019)

    Google Scholar 

  35. Wu, X., He, R., Sun, Z., Tan, T.: A light CNN for deep face representation with noisy labels. IEEE Trans. Inf. Forensics Secur. 13(11), 2884–2896 (2018)

    Article  Google Scholar 

  36. Xu, T., et al.: Deeper interpretability of deep networks. ArXiv, abs/1811.07807 (2018)

    Google Scholar 

  37. Yin, B., Tran, L., Li, H., Shen, X., Liu, X.: Towards interpretable face recognition. In: Proceeding of International Conference on Computer Vision, Seoul, South Korea, October 2019

    Google Scholar 

  38. Zee, T., Gali, G., Nwogu, I.: Enhancing human face recognition with an interpretable neural network. In: The IEEE International Conference on Computer Vision (ICCV) Workshops, October 2019

    Google Scholar 

  39. Zhang, J., Lin, Z., Brandt, J., Shen, X., Sclaroff, S.: Top-down neural attention by excitation backprop. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9908, pp. 543–559 (2016)

    Google Scholar 

  40. Zheng, C., Cham, T.-J., Cai, J.: Pluralistic image completion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1438–1447 (2019)

    Google Scholar 

  41. Zhong, Y., Deng, W.: Exploring features and attributes in deep face recognition using visualization techniques. In: IEEE International Conference on Automatic Face and Gesture Recognition (FG 2019) (2019)

    Google Scholar 

  42. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: CVPR (2016)

    Google Scholar 

Download references

Acknowledgement

This research is based upon work supported by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) under contract number 2019-19022600003. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purpose notwithstanding any copyright annotation thereon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brandon B. May .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 16268 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Williford, J.R., May, B.B., Byrne, J. (2020). Explainable Face Recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12356. Springer, Cham. https://doi.org/10.1007/978-3-030-58621-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58621-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58620-1

  • Online ISBN: 978-3-030-58621-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics