Skip to main content

SPOT: Selective Point Cloud Voting for Better Proposal in Point Cloud Object Detection

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12356))

Abstract

The sparsity of point clouds limits deep learning models on capturing long-range dependencies, which makes features extracted by the models ambiguous. In point cloud object detection, ambiguous features make it hard for detectors to locate object centers (Fig. 1) and finally lead to bad detection results. In this work, we propose Selective Point clOud voTing (SPOT) module, a simple effective component that can be easily trained end-to-end in point cloud object detectors to solve this problem. Inspired by probabilistic Hough voting, SPOT incorporates an attention mechanism that helps detectors focus on less ambiguous features and preserves their diversity of mapping to multiple object centers. For evaluating our module, we implement SPOT on advanced baseline detectors and test on two benchmark datasets of clutter indoor scenes, ScanNet and SUN RGB-D. Baselines enhanced by our module can stably improve results in agreement by a large margin and achieve new state-or-the-art detection, especially under more strict evaluation metric that adopts larger IoU threshold, implying our module is the key leading to high-quality object detection in point clouds.

H. Du and L. Li—Equal contribution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    While the description provided in this section is tailored to VoteNet, SPOT can be deployed on other detectors with minor modifications. Some variants are discussed in the experiments section.

References

  1. Attneave, F.: Information aspects of visual perception. Psychol. Rev. 61, 183–193 (1954)

    Article  Google Scholar 

  2. Ballard, D.H.: Generalizing the Hough transform to detect arbitrary shapes. Pattern Recogn. 13(2), 111–122 (1981)

    Article  Google Scholar 

  3. Barlow, H.: Cerebral cortex as a model builder. In: Models of the Visual Cortex, pp. 37–46 (1985)

    Google Scholar 

  4. Binford, T.: Inferring surfaces from images. Artif. Intell. 17, 205–244 (1981)

    Article  Google Scholar 

  5. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017)

    Article  Google Scholar 

  6. Chen, Y., Liu, S., Shen, X., Jia, J.: Fast point R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 9775–9784 (2019)

    Google Scholar 

  7. Corbière, C., Thome, N., Bar-Hen, A., Cord, M., Pérez, P.: Addressing failure prediction by learning model confidence. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 2902–2913 (2019)

    Google Scholar 

  8. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: ScanNet: richly-annotated 3D reconstructions of indoor scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5828–5839 (2017)

    Google Scholar 

  9. Engelcke, M., Rao, D., Wang, D.Z., Tong, C.H., Posner, I.: Vote3Deep: fast object detection in 3D point clouds using efficient convolutional neural networks. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1355–1361 (2017)

    Google Scholar 

  10. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning (ICML), pp. 1050–1059 (2016)

    Google Scholar 

  11. Geifman, Y., El-Yaniv, R.: Selective classification for deep neural networks. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 4878–4887 (2017)

    Google Scholar 

  12. Geifman, Y., El-Yaniv, R.: SelectiveNet: a deep neural network with an integrated reject option. In: International Conference on Machine Learning (ICML), pp. 2151–2159 (2019)

    Google Scholar 

  13. Graham, B., Engelcke, M., Van Der Maaten, L.: 3D semantic segmentation with submanifold sparse convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9224–9232 (2018)

    Google Scholar 

  14. Harris, C.G., et al.: A combined corner and edge detector. In: Alvey Vision Conference, vol. 15, pp. 10–5244 (1988)

    Google Scholar 

  15. Hou, J., Dai, A., Nießner, M.: 3D-SIS: 3D semantic instance segmentation of RGB-D scans. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4421–4430 (2019)

    Google Scholar 

  16. Hough, P.V.: Machine analysis of bubble chamber pictures. In: Proceedings of the International Conference on High Energy Accelerators and Instrumentation, pp. 554–556 (1959)

    Google Scholar 

  17. Huang, Q., Wang, W., Neumann, U.: Recurrent slice networks for 3D segmentation of point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2626–2635 (2018)

    Google Scholar 

  18. Klokov, R., Lempitsky, V.: Escape from cells: deep Kd-networks for the recognition of 3D point cloud models. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 863–872 (2017)

    Google Scholar 

  19. Knopp, J., Prasad, M., Willems, G., Timofte, R., Van Gool, L.: Hough transform and 3D SURF for robust three dimensional classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 589–602. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15567-3_43

    Chapter  Google Scholar 

  20. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: PointPillars: fast encoders for object detection from point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12697–12705 (2019)

    Google Scholar 

  21. Leibe, B., Leonardis, A., Schiele, B.: Robust object detection with interleaved categorization and segmentation. Int. J. Comput. Vis. (IJCV) 77(1–3), 259–289 (2008)

    Article  Google Scholar 

  22. Liu, Y., Fan, B., Xiang, S., Pan, C.: Relation-shape convolutional neural network for point cloud analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8895–8904 (2019)

    Google Scholar 

  23. Lowe, D.: Three-dimensional object recognition from single two-dimensional images. Artif. Intell. 31, 355–395 (1987)

    Article  Google Scholar 

  24. Maji, S., Malik, J.: Object detection using a max-margin Hough transform. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1038–1045 (2009)

    Google Scholar 

  25. Maturana, D., Scherer, S.: VoxNet: a 3D convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 922–928 (2015)

    Google Scholar 

  26. Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep Hough voting for 3D object detection in point clouds. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 9277–9286 (2019)

    Google Scholar 

  27. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 652–660 (2017)

    Google Scholar 

  28. Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.J.: Volumetric and multi-view CNNs for object classification on 3D data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5648–5656 (2016)

    Google Scholar 

  29. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 5099–5108 (2017)

    Google Scholar 

  30. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 91–99 (2015)

    Google Scholar 

  31. Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. Int. J. Comput. Vis. (IJCV) 37, 151–172 (2000)

    Article  Google Scholar 

  32. Shi, S., et al.: PV-RCNN: Point-Voxel feature set abstraction for 3D object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10529–10538 (2020)

    Google Scholar 

  33. Shi, S., Wang, X., Li, H.: PointRCNN: 3D object proposal generation and detection from point cloud. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–779 (2019)

    Google Scholar 

  34. Shi, S., Wang, Z., Shi, J., Wang, X., Li, H.: From points to parts: 3D object detection from point cloud with part-aware and part-aggregation network. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) (2020)

    Google Scholar 

  35. Song, S., Lichtenberg, S.P., Xiao, J.: SUN RGB-D: a RGB-D scene understanding benchmark suite. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 567–576 (2015)

    Google Scholar 

  36. Song, S., Xiao, J.: Deep sliding shapes for amodal 3D object detection in RGB-D images. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (CVPR), pp. 808–816 (2016)

    Google Scholar 

  37. Su, H., et al.: SPLATNet: sparse lattice networks for point cloud processing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2530–2539 (2018)

    Google Scholar 

  38. Velizhev, A., Shapovalov, R., Schindler, K.: Implicit shape models for object detection in 3D point clouds. In: International Society of Photogrammetry and Remote Sensing Congress, vol. 2, p. 2 (2012)

    Google Scholar 

  39. Wang, D.Z., Posner, I.: Voting for voting in online point cloud object detection. In: Robotics: Science and Systems, vol. 1, pp. 10–15607 (2015)

    Google Scholar 

  40. Wang, P., Vasconcelos, N.: Towards realistic predictors. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 36–51 (2018)

    Google Scholar 

  41. Woodford, O.J., Pham, M.T., Maki, A., Perbet, F., Stenger, B.: Demisting the hough transform for 3D shape recognition and registration. Int. J. Comput. Vis. (IJCV) 106, 332–341 (2014)

    Article  Google Scholar 

  42. Wu, Z., et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1912–1920 (2015)

    Google Scholar 

  43. Yan, Y., Mao, Y., Li, B.: Second: sparsely embedded convolutional detection. Sensors 18(10), 3337 (2018)

    Article  Google Scholar 

  44. Yang, Z., Sun, Y., Liu, S., Shen, X., Jia, J.: STD: Sparse-to-dense 3D object detector for point cloud. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1951–1960 (2019)

    Google Scholar 

  45. Yi, L., Zhao, W., Wang, H., Sung, M., Guibas, L.J.: GSPN: Generative shape proposal network for 3D instance segmentation in point cloud. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3947–3956 (2019)

    Google Scholar 

  46. Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4490–4499 (2018)

    Google Scholar 

  47. Zhu, B., Jiang, Z., Zhou, X., Li, Z., Yu, G.: Class-balanced grouping and sampling for point cloud 3D object detection. arXiv preprint arXiv:1908.09492 (2019)

Download references

Acknowledgment:

This work was partially funded by NSF awards IIS-1637941, IIS-1924937, and NVIDIA GPU donations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyuan Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Du, H., Li, L., Liu, B., Vasconcelos, N. (2020). SPOT: Selective Point Cloud Voting for Better Proposal in Point Cloud Object Detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12356. Springer, Cham. https://doi.org/10.1007/978-3-030-58621-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58621-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58620-1

  • Online ISBN: 978-3-030-58621-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics