Skip to main content

BBS-Net: RGB-D Salient Object Detection with a Bifurcated Backbone Strategy Network

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

Multi-level feature fusion is a fundamental topic in computer vision for detecting, segmenting and classifying objects at various scales. When multi-level features meet multi-modal cues, the optimal fusion problem becomes a hot potato. In this paper, we make the first attempt to leverage the inherent multi-modal and multi-level nature of RGB-D salient object detection to develop a novel cascaded refinement network. In particular, we 1) propose a bifurcated backbone strategy (BBS) to split the multi-level features into teacher and student features, and 2) utilize a depth-enhanced module (DEM) to excavate informative parts of depth cues from the channel and spatial views. This fuses RGB and depth modalities in a complementary way. Our simple yet efficient architecture, dubbed Bifurcated Backbone Strategy Network (BBS-Net), is backbone independent and outperforms 18 SOTAs on seven challenging datasets using four metrics.

D.-P. Fan and Y. Zhai—Equal contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that we use the terms ‘high-level features & low-level features’ and ‘teacher features & student features’ interchangeably.

References

  1. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: CVPR, pp. 1597–1604 (2009)

    Google Scholar 

  2. Borji, A., Cheng, M.M., Jiang, H., Li, J.: Salient object detection: a benchmark. IEEE TIP 24(12), 5706–5722 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Chen, H., Li, Y.: Progressively complementarity-aware fusion network for RGB-D salient object detection. In: CVPR, pp. 3051–3060 (2018)

    Google Scholar 

  4. Chen, H., Li, Y.: Three-stream attention-aware network for RGB-D salient object detection. IEEE TIP 28(6), 2825–2835 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Chen, H., Li, Y., Su, D.: Multi-modal fusion network with multi-scale multi-path and cross-modal interactions for RGB-D salient object detection. IEEE TOC 86, 376–385 (2019)

    Google Scholar 

  6. Chen, Q., Koltun, V.: Photographic image synthesis with cascaded refinement networks. In: CVPR, pp. 1511–1520 (2017)

    Google Scholar 

  7. Chen, S., Tan, X., Wang, B., Lu, H., Hu, X., Fu, Y.: Reverse attention-based residual network for salient object detection. IEEE TIP 29, 3763–3776 (2020)

    Google Scholar 

  8. Cheng, G., Han, J., Zhou, P., Xu, D.: Learning rotation-invariant and fisher discriminative convolutional neural networks for object detection. IEEE TIP 28(1), 265–278 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Cheng, Y., Fu, H., Wei, X., Xiao, J., Cao, X.: Depth enhanced saliency detection method. In: ICIMCS, pp. 23–27 (2014)

    Google Scholar 

  10. Ciptadi, A., Hermans, T., Rehg, J.M.: An in depth view of saliency. In: BMVC (2013)

    Google Scholar 

  11. Cong, R., Lei, J., Fu, H., Hou, J., Huang, Q., Kwong, S.: Going from RGB to RGBD saliency: a depth-guided transformation model. IEEE TOC, 1–13 (2019)

    Google Scholar 

  12. Cong, R., Lei, J., Zhang, C., Huang, Q., Cao, X., Hou, C.: Saliency detection for stereoscopic images based on depth confidence analysis and multiple cues fusion. IEEE SPL 23(6), 819–823 (2016)

    Google Scholar 

  13. Cong, R., Lei, J., Fu, H., Huang, Q., Cao, X., Ling, N.: HSCS: hierarchical sparsity based co-saliency detection for RGBD images. IEEE TMM 21(7), 1660–1671 (2019)

    Google Scholar 

  14. Deng, Z., et al.: R3Net: recurrent residual refinement network for saliency detection. In: IJCAI, pp. 684–690 (2018)

    Google Scholar 

  15. Desingh, K., Krishna, K., Rajanand, D., Jawahar, C.: Depth really matters: improving visual salient region detection with depth. In: BMVC, pp. 1–11 (2013)

    Google Scholar 

  16. Fan, D.P., Cheng, M.M., Liu, J.J., Gao, S.H., Hou, Q., Borji, A.: Salient objects in clutter: bringing salient object detection to the foreground. In: ECCV, pp. 186–202 (2018)

    Google Scholar 

  17. Fan, D.P., Cheng, M.M., Liu, Y., Li, T., Borji, A.: Structure-measure: a new way to evaluate foreground maps. In: ICCV, pp. 4548–4557 (2017)

    Google Scholar 

  18. Fan, D.P., Gong, C., Cao, Y., Ren, B., Cheng, M.M., Borji, A.: Enhanced-alignment measure for binary foreground map evaluation. In: IJCAI, pp. 698–704 (2018)

    Google Scholar 

  19. Fan, D.P., Lin, Z., Ji, G.P., Zhang, D., Fu, H., Cheng, M.M.: Taking a deeper look at co-salient object detection. In: CVPR, pp. 2919–2929 (2020)

    Google Scholar 

  20. Fan, D.P., Lin, Z., Zhang, Z., Zhu, M., Cheng, M.M.: Rethinking RGB-D salient object detection: models, datasets, and large-scale benchmarks. IEEE TNNLS (2020)

    Google Scholar 

  21. Fan, D.P., Wang, W., Cheng, M.M., Shen, J.: Shifting more attention to video salient object detection. In: CVPR, pp. 8554–8564 (2019)

    Google Scholar 

  22. Fan, X., Liu, Z., Sun, G.: Salient region detection for stereoscopic images. In: DSP, pp. 454–458 (2014)

    Google Scholar 

  23. Fang, Y., Wang, J., Narwaria, M., Le Callet, P., Lin, W.: Saliency detection for stereoscopic images. IEEE TIP 23(6), 2625–2636 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Feng, D., Barnes, N., You, S., McCarthy, C.: Local background enclosure for RGB-D salient object detection. In: CVPR, pp. 2343–2350 (2016)

    Google Scholar 

  25. Fu, K., Fan, D.P., Ji, G.P., Zhao, Q.: JL-DCF: joint learning and densely-cooperative fusion framework for RGB-D salient object detection. In: CVPR, pp. 3052–3062 (2020)

    Google Scholar 

  26. Gao, S.H., Tan, Y.Q., Cheng, M.M., Lu, C., Chen, Y., Yan, S.: Highly efficient salient object detection with 100K parameters. In: ECCV (2020)

    Google Scholar 

  27. Guo, J., Ren, T., Bei, J.: Salient object detection for RGB-D image via saliency evolution. In: ICME, pp. 1–6 (2016)

    Google Scholar 

  28. Han, J., Chen, H., Liu, N., Yan, C., Li, X.: CNNs-based RGB-D saliency detection via cross-view transfer and multiview fusion. IEEE TOC 48(11), 3171–3183 (2018)

    Google Scholar 

  29. Han, J., Yang, L., Zhang, D., Chang, X., Liang, X.: Reinforcement cutting-agent learning for video object segmentation. In: CVPR, pp. 9080–9089 (2018)

    Google Scholar 

  30. Han, Q., Zhao, K., Xu, J., Cheng, M.M.: Deep hough transform for semantic line detection. In: ECCV (2020)

    Google Scholar 

  31. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  32. He, X., Yang, S., Li, G., Li, H., Chang, H., Yu, Y.: Non-local context encoder: robust biomedical image segmentation against adversarial attacks. In: AAAI 2019, pp. 8417–8424 (2019)

    Google Scholar 

  33. Hu, X., Yang, K., Fei, L., Wang, K.: ACNet: attention based network to exploit complementary features for RGBD semantic segmentation. In: ICIP, pp. 1440–1444 (2019)

    Google Scholar 

  34. Ju, R., Ge, L., Geng, W., Ren, T., Wu, G.: Depth saliency based on anisotropic center-surround difference. In: ICIP, pp. 1115–1119 (2014)

    Google Scholar 

  35. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  36. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS, pp. 1106–1114 (2012)

    Google Scholar 

  37. Li, G., Yu, Y.: Visual saliency based on multiscale deep features. In: CVPR, pp. 5455–5463 (2015)

    Google Scholar 

  38. Li, G., Zhu, X., Zeng, Y., Wang, Q., Lin, L.: Semantic relationships guided representation learning for facial action unit recognition. In: AAAI, pp. 8594–8601 (2019)

    Google Scholar 

  39. Li, H., Chen, G., Li, G., Yu, Y.: Motion guided attention for video salient object detection. In: ICCV, pp. 7274–7283 (2019)

    Google Scholar 

  40. Li, J., et al.: Learning from large-scale noisy web data with ubiquitous reweighting for image classification. IEEE TPAMI (2019)

    Google Scholar 

  41. Li, N., Ye, J., Ji, Y., Ling, H., Yu, J.: Saliency detection on light field. In: CVPR, pp. 2806–2813 (2014)

    Google Scholar 

  42. Li, X., Yang, F., Cheng, H., Liu, W., Shen, D.: Contour knowledge transfer for salient object detection. In: ECCV, pp. 355–370 (2018)

    Google Scholar 

  43. Liang, F., Duan, L., Ma, W., Qiao, Y., Cai, Z., Qing, L.: Stereoscopic saliency model using contrast and depth-guided-background prior. Neurocomputing 275, 2227–2238 (2018)

    Article  Google Scholar 

  44. Liu, J.J., Hou, Q., Cheng, M.M., Feng, J., Jiang, J.: A simple pooling-based design for real-time salient object detection. In: CVPR, pp. 3917–3926 (2019)

    Google Scholar 

  45. Liu, N., Han, J., Yang, M.H.: PiCANet: learning pixel-wise contextual attention for saliency detection. In: CVPR, pp. 3089–3098 (2018)

    Google Scholar 

  46. Liu, S., Huang, D., Wang, Y.: Receptive field block net for accurate and fast object detection. In: ECCV, pp. 404–419 (2018)

    Google Scholar 

  47. Liu, Z., Shi, S., Duan, Q., Zhang, W., Zhao, P.: Salient object detection for RGB-D image by single stream recurrent convolution neural network. Neurocomputing 363, 46–57 (2019)

    Article  Google Scholar 

  48. Luo, A., Li, X., Yang, F., Jiao, Z., Cheng, H., Lyu, S.: Cascade graph neural networks for RGB-D salient object detection. In: ECCV (2020)

    Google Scholar 

  49. Niu, Y., Geng, Y., Li, X., Liu, F.: Leveraging stereopsis for saliency analysis. In: CVPR, pp. 454–461 (2012)

    Google Scholar 

  50. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Is object localization for free? - Weakly-supervised learning with convolutional neural networks. In: CVPR, pp. 685–694 (2015)

    Google Scholar 

  51. Peng, H., Li, B., Xiong, W., Hu, W., Ji, R.: RGBD salient object detection: a benchmark and algorithms. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. Lecture Notes in Computer Science, vol. 8691, pp. 92–109. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_7

    Chapter  Google Scholar 

  52. Piao, Y., Ji, W., Li, J., Zhang, M., Lu, H.: Depth-induced multi-scale recurrent attention network for saliency detection. In: ICCV, pp. 7254–7263 (2019)

    Google Scholar 

  53. Qiao, L., Shi, Y., Li, J., Wang, Y., Huang, T., Tian, Y.: Transductive episodic-wise adaptive metric for few-shot learning. In: ICCV, pp. 3603–3612 (2019)

    Google Scholar 

  54. Qu, L., He, S., Zhang, J., Tian, J., Tang, Y., Yang, Q.: RGBD salient object detection via deep fusion. IEEE TIP 26(5), 2274–2285 (2017)

    MathSciNet  MATH  Google Scholar 

  55. Ren, J., Gong, X., Yu, L., Zhou, W., Ying Yang, M.: Exploiting global priors for RGB-D saliency detection. In: CVPRW, pp. 25–32 (2015)

    Google Scholar 

  56. Shigematsu, R., Feng, D., You, S., Barnes, N.: Learning RGB-D salient object detection using background enclosure, depth contrast, and top-down features. In: ICCVW, pp. 2749–2757 (2017)

    Google Scholar 

  57. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  58. Song, H., Liu, Z., Du, H., Sun, G., Le Meur, O., Ren, T.: Depth-aware salient object detection and segmentation via multiscale discriminative saliency fusion and bootstrap learning. IEEE TIP 26(9), 4204–4216 (2017)

    MathSciNet  MATH  Google Scholar 

  59. Steiner, B., et al.: PyTorch: an imperative style, high-performance deep learning library. In: NIPS, pp. 8024–8035 (2019)

    Google Scholar 

  60. Su, J., Li, J., Zhang, Y., Xia, C., Tian, Y.: Selectivity or invariance: boundary-aware salient object detection. In: ICCV, pp. 3798–3807 (2019)

    Google Scholar 

  61. Wang, L., Wang, L., Lu, H., Zhang, P., Ruan, X.: Salient object detection with recurrent fully convolutional networks. IEEE TPAMI 41(7), 1734–1746 (2018)

    Article  Google Scholar 

  62. Wang, N., Gong, X.: Adaptive fusion for RGB-D salient object detection. IEEE Access 7, 55277–55284 (2019)

    Article  Google Scholar 

  63. Wang, T., et al.: Detect globally, refine locally: a novel approach to saliency detection. In: CVPR, pp. 3127–3135 (2018)

    Google Scholar 

  64. Woo, S., Park, J., Lee, J.Y., So Kweon, I.: CBAM: convolutional block attention module. In: ECCV, pp. 3–19 (2018)

    Google Scholar 

  65. Wu, Z., Su, L., Huang, Q.: Cascaded partial decoder for fast and accurate salient object detection. In: CVPR, pp. 3907–3916 (2019)

    Google Scholar 

  66. Wu, Z., Su, L., Huang, Q.: Stacked cross refinement network for edge-aware salient object detection. In: ICCV, pp. 7264–7273 (2019)

    Google Scholar 

  67. Zeng, Y., Zhuge, Y., Lu, H., Zhang, L.: Joint learning of saliency detection and weakly supervised semantic segmentation. In: ICCV, pp. 7223–7233 (2019)

    Google Scholar 

  68. Zhang, J., et al.: UC-Net: uncertainty inspired RGB-D saliency detection via conditional variational autoencoders. In: CVPR, pp. 8582–8591 (2020)

    Google Scholar 

  69. Zhang, L., Wu, J., Wang, T., Borji, A., Wei, G., Lu, H.: A multistage refinement network for salient object detection. IEEE TIP 29, 3534–3545 (2020)

    Google Scholar 

  70. Zhang, Q., Huang, N., Yao, L., Zhang, D., Shan, C., Han, J.: RGB-T salient object detection via fusing multi-level CNN features. IEEE TIP 29, 3321–3335 (2020)

    Google Scholar 

  71. Zhang, X., Wang, T., Qi, J., Lu, H., Wang, G.: Progressive attention guided recurrent network for salient object detection. In: CVPR, pp. 714–722 (2018)

    Google Scholar 

  72. Zhang, Z., Jin, W., Xu, J., Cheng, M.M.: Gradient-induced co-saliency detection. In: ECCV (2020)

    Google Scholar 

  73. Zhang, Z., Lin, Z., Xu, J., Jin, W., Lu, S.P., Fan, D.P.: Bilateral attention network for RGB-D salient object detection. arXiv preprint arXiv:2004.14582 (2020)

  74. Zhao, J.X., Cao, Y., Fan, D.P., Cheng, M.M., Li, X.Y., Zhang, L.: Contrast prior and fluid pyramid integration for RGBD salient object detection. In: CVPR, pp. 3927–3936 (2019)

    Google Scholar 

  75. Zhao, J.X., Liu, J.J., Fan, D.P., Cao, Y., Yang, J., Cheng, M.M.: EGNet: edge guidance network for salient object detection. In: CVPR, pp. 8779–8788 (2019)

    Google Scholar 

  76. Zhu, C., Cai, X., Huang, K., Li, T.H., Li, G.: PDNet: prior-model guided depth-enhanced network for salient object detection. In: ICME, pp. 199–204 (2019)

    Google Scholar 

  77. Zhu, C., Li, G.: A three-pathway psychobiological framework of salient object detection using stereoscopic technology. In: ICCVW, pp. 3008–3014 (2017)

    Google Scholar 

  78. Zhu, C., Li, G., Wang, W., Wang, R.: An innovative salient object detection using center-dark channel prior. In: ICCVW, pp. 1509–1515 (2017)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Major Project for New Generation of AI Grant (NO. 2018AAA0100403), NSFC (NO. 61876094, U1933114), Natural Science Foundation of Tianjin, China (NO. 18JCYBJC15400, 18ZXZNGX00110), the Open Project Program of the National Laboratory of Pattern Recognition (NLPR), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jufeng Yang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 7112 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fan, DP., Zhai, Y., Borji, A., Yang, J., Shao, L. (2020). BBS-Net: RGB-D Salient Object Detection with a Bifurcated Backbone Strategy Network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12357. Springer, Cham. https://doi.org/10.1007/978-3-030-58610-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58610-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58609-6

  • Online ISBN: 978-3-030-58610-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics