Abstract
Multi-level feature fusion is a fundamental topic in computer vision for detecting, segmenting and classifying objects at various scales. When multi-level features meet multi-modal cues, the optimal fusion problem becomes a hot potato. In this paper, we make the first attempt to leverage the inherent multi-modal and multi-level nature of RGB-D salient object detection to develop a novel cascaded refinement network. In particular, we 1) propose a bifurcated backbone strategy (BBS) to split the multi-level features into teacher and student features, and 2) utilize a depth-enhanced module (DEM) to excavate informative parts of depth cues from the channel and spatial views. This fuses RGB and depth modalities in a complementary way. Our simple yet efficient architecture, dubbed Bifurcated Backbone Strategy Network (BBS-Net), is backbone independent and outperforms 18 SOTAs on seven challenging datasets using four metrics.
D.-P. Fan and Y. Zhai—Equal contributions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note that we use the terms ‘high-level features & low-level features’ and ‘teacher features & student features’ interchangeably.
References
Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: CVPR, pp. 1597–1604 (2009)
Borji, A., Cheng, M.M., Jiang, H., Li, J.: Salient object detection: a benchmark. IEEE TIP 24(12), 5706–5722 (2015)
Chen, H., Li, Y.: Progressively complementarity-aware fusion network for RGB-D salient object detection. In: CVPR, pp. 3051–3060 (2018)
Chen, H., Li, Y.: Three-stream attention-aware network for RGB-D salient object detection. IEEE TIP 28(6), 2825–2835 (2019)
Chen, H., Li, Y., Su, D.: Multi-modal fusion network with multi-scale multi-path and cross-modal interactions for RGB-D salient object detection. IEEE TOC 86, 376–385 (2019)
Chen, Q., Koltun, V.: Photographic image synthesis with cascaded refinement networks. In: CVPR, pp. 1511–1520 (2017)
Chen, S., Tan, X., Wang, B., Lu, H., Hu, X., Fu, Y.: Reverse attention-based residual network for salient object detection. IEEE TIP 29, 3763–3776 (2020)
Cheng, G., Han, J., Zhou, P., Xu, D.: Learning rotation-invariant and fisher discriminative convolutional neural networks for object detection. IEEE TIP 28(1), 265–278 (2018)
Cheng, Y., Fu, H., Wei, X., Xiao, J., Cao, X.: Depth enhanced saliency detection method. In: ICIMCS, pp. 23–27 (2014)
Ciptadi, A., Hermans, T., Rehg, J.M.: An in depth view of saliency. In: BMVC (2013)
Cong, R., Lei, J., Fu, H., Hou, J., Huang, Q., Kwong, S.: Going from RGB to RGBD saliency: a depth-guided transformation model. IEEE TOC, 1–13 (2019)
Cong, R., Lei, J., Zhang, C., Huang, Q., Cao, X., Hou, C.: Saliency detection for stereoscopic images based on depth confidence analysis and multiple cues fusion. IEEE SPL 23(6), 819–823 (2016)
Cong, R., Lei, J., Fu, H., Huang, Q., Cao, X., Ling, N.: HSCS: hierarchical sparsity based co-saliency detection for RGBD images. IEEE TMM 21(7), 1660–1671 (2019)
Deng, Z., et al.: R3Net: recurrent residual refinement network for saliency detection. In: IJCAI, pp. 684–690 (2018)
Desingh, K., Krishna, K., Rajanand, D., Jawahar, C.: Depth really matters: improving visual salient region detection with depth. In: BMVC, pp. 1–11 (2013)
Fan, D.P., Cheng, M.M., Liu, J.J., Gao, S.H., Hou, Q., Borji, A.: Salient objects in clutter: bringing salient object detection to the foreground. In: ECCV, pp. 186–202 (2018)
Fan, D.P., Cheng, M.M., Liu, Y., Li, T., Borji, A.: Structure-measure: a new way to evaluate foreground maps. In: ICCV, pp. 4548–4557 (2017)
Fan, D.P., Gong, C., Cao, Y., Ren, B., Cheng, M.M., Borji, A.: Enhanced-alignment measure for binary foreground map evaluation. In: IJCAI, pp. 698–704 (2018)
Fan, D.P., Lin, Z., Ji, G.P., Zhang, D., Fu, H., Cheng, M.M.: Taking a deeper look at co-salient object detection. In: CVPR, pp. 2919–2929 (2020)
Fan, D.P., Lin, Z., Zhang, Z., Zhu, M., Cheng, M.M.: Rethinking RGB-D salient object detection: models, datasets, and large-scale benchmarks. IEEE TNNLS (2020)
Fan, D.P., Wang, W., Cheng, M.M., Shen, J.: Shifting more attention to video salient object detection. In: CVPR, pp. 8554–8564 (2019)
Fan, X., Liu, Z., Sun, G.: Salient region detection for stereoscopic images. In: DSP, pp. 454–458 (2014)
Fang, Y., Wang, J., Narwaria, M., Le Callet, P., Lin, W.: Saliency detection for stereoscopic images. IEEE TIP 23(6), 2625–2636 (2014)
Feng, D., Barnes, N., You, S., McCarthy, C.: Local background enclosure for RGB-D salient object detection. In: CVPR, pp. 2343–2350 (2016)
Fu, K., Fan, D.P., Ji, G.P., Zhao, Q.: JL-DCF: joint learning and densely-cooperative fusion framework for RGB-D salient object detection. In: CVPR, pp. 3052–3062 (2020)
Gao, S.H., Tan, Y.Q., Cheng, M.M., Lu, C., Chen, Y., Yan, S.: Highly efficient salient object detection with 100K parameters. In: ECCV (2020)
Guo, J., Ren, T., Bei, J.: Salient object detection for RGB-D image via saliency evolution. In: ICME, pp. 1–6 (2016)
Han, J., Chen, H., Liu, N., Yan, C., Li, X.: CNNs-based RGB-D saliency detection via cross-view transfer and multiview fusion. IEEE TOC 48(11), 3171–3183 (2018)
Han, J., Yang, L., Zhang, D., Chang, X., Liang, X.: Reinforcement cutting-agent learning for video object segmentation. In: CVPR, pp. 9080–9089 (2018)
Han, Q., Zhao, K., Xu, J., Cheng, M.M.: Deep hough transform for semantic line detection. In: ECCV (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
He, X., Yang, S., Li, G., Li, H., Chang, H., Yu, Y.: Non-local context encoder: robust biomedical image segmentation against adversarial attacks. In: AAAI 2019, pp. 8417–8424 (2019)
Hu, X., Yang, K., Fei, L., Wang, K.: ACNet: attention based network to exploit complementary features for RGBD semantic segmentation. In: ICIP, pp. 1440–1444 (2019)
Ju, R., Ge, L., Geng, W., Ren, T., Wu, G.: Depth saliency based on anisotropic center-surround difference. In: ICIP, pp. 1115–1119 (2014)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS, pp. 1106–1114 (2012)
Li, G., Yu, Y.: Visual saliency based on multiscale deep features. In: CVPR, pp. 5455–5463 (2015)
Li, G., Zhu, X., Zeng, Y., Wang, Q., Lin, L.: Semantic relationships guided representation learning for facial action unit recognition. In: AAAI, pp. 8594–8601 (2019)
Li, H., Chen, G., Li, G., Yu, Y.: Motion guided attention for video salient object detection. In: ICCV, pp. 7274–7283 (2019)
Li, J., et al.: Learning from large-scale noisy web data with ubiquitous reweighting for image classification. IEEE TPAMI (2019)
Li, N., Ye, J., Ji, Y., Ling, H., Yu, J.: Saliency detection on light field. In: CVPR, pp. 2806–2813 (2014)
Li, X., Yang, F., Cheng, H., Liu, W., Shen, D.: Contour knowledge transfer for salient object detection. In: ECCV, pp. 355–370 (2018)
Liang, F., Duan, L., Ma, W., Qiao, Y., Cai, Z., Qing, L.: Stereoscopic saliency model using contrast and depth-guided-background prior. Neurocomputing 275, 2227–2238 (2018)
Liu, J.J., Hou, Q., Cheng, M.M., Feng, J., Jiang, J.: A simple pooling-based design for real-time salient object detection. In: CVPR, pp. 3917–3926 (2019)
Liu, N., Han, J., Yang, M.H.: PiCANet: learning pixel-wise contextual attention for saliency detection. In: CVPR, pp. 3089–3098 (2018)
Liu, S., Huang, D., Wang, Y.: Receptive field block net for accurate and fast object detection. In: ECCV, pp. 404–419 (2018)
Liu, Z., Shi, S., Duan, Q., Zhang, W., Zhao, P.: Salient object detection for RGB-D image by single stream recurrent convolution neural network. Neurocomputing 363, 46–57 (2019)
Luo, A., Li, X., Yang, F., Jiao, Z., Cheng, H., Lyu, S.: Cascade graph neural networks for RGB-D salient object detection. In: ECCV (2020)
Niu, Y., Geng, Y., Li, X., Liu, F.: Leveraging stereopsis for saliency analysis. In: CVPR, pp. 454–461 (2012)
Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Is object localization for free? - Weakly-supervised learning with convolutional neural networks. In: CVPR, pp. 685–694 (2015)
Peng, H., Li, B., Xiong, W., Hu, W., Ji, R.: RGBD salient object detection: a benchmark and algorithms. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. Lecture Notes in Computer Science, vol. 8691, pp. 92–109. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_7
Piao, Y., Ji, W., Li, J., Zhang, M., Lu, H.: Depth-induced multi-scale recurrent attention network for saliency detection. In: ICCV, pp. 7254–7263 (2019)
Qiao, L., Shi, Y., Li, J., Wang, Y., Huang, T., Tian, Y.: Transductive episodic-wise adaptive metric for few-shot learning. In: ICCV, pp. 3603–3612 (2019)
Qu, L., He, S., Zhang, J., Tian, J., Tang, Y., Yang, Q.: RGBD salient object detection via deep fusion. IEEE TIP 26(5), 2274–2285 (2017)
Ren, J., Gong, X., Yu, L., Zhou, W., Ying Yang, M.: Exploiting global priors for RGB-D saliency detection. In: CVPRW, pp. 25–32 (2015)
Shigematsu, R., Feng, D., You, S., Barnes, N.: Learning RGB-D salient object detection using background enclosure, depth contrast, and top-down features. In: ICCVW, pp. 2749–2757 (2017)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Song, H., Liu, Z., Du, H., Sun, G., Le Meur, O., Ren, T.: Depth-aware salient object detection and segmentation via multiscale discriminative saliency fusion and bootstrap learning. IEEE TIP 26(9), 4204–4216 (2017)
Steiner, B., et al.: PyTorch: an imperative style, high-performance deep learning library. In: NIPS, pp. 8024–8035 (2019)
Su, J., Li, J., Zhang, Y., Xia, C., Tian, Y.: Selectivity or invariance: boundary-aware salient object detection. In: ICCV, pp. 3798–3807 (2019)
Wang, L., Wang, L., Lu, H., Zhang, P., Ruan, X.: Salient object detection with recurrent fully convolutional networks. IEEE TPAMI 41(7), 1734–1746 (2018)
Wang, N., Gong, X.: Adaptive fusion for RGB-D salient object detection. IEEE Access 7, 55277–55284 (2019)
Wang, T., et al.: Detect globally, refine locally: a novel approach to saliency detection. In: CVPR, pp. 3127–3135 (2018)
Woo, S., Park, J., Lee, J.Y., So Kweon, I.: CBAM: convolutional block attention module. In: ECCV, pp. 3–19 (2018)
Wu, Z., Su, L., Huang, Q.: Cascaded partial decoder for fast and accurate salient object detection. In: CVPR, pp. 3907–3916 (2019)
Wu, Z., Su, L., Huang, Q.: Stacked cross refinement network for edge-aware salient object detection. In: ICCV, pp. 7264–7273 (2019)
Zeng, Y., Zhuge, Y., Lu, H., Zhang, L.: Joint learning of saliency detection and weakly supervised semantic segmentation. In: ICCV, pp. 7223–7233 (2019)
Zhang, J., et al.: UC-Net: uncertainty inspired RGB-D saliency detection via conditional variational autoencoders. In: CVPR, pp. 8582–8591 (2020)
Zhang, L., Wu, J., Wang, T., Borji, A., Wei, G., Lu, H.: A multistage refinement network for salient object detection. IEEE TIP 29, 3534–3545 (2020)
Zhang, Q., Huang, N., Yao, L., Zhang, D., Shan, C., Han, J.: RGB-T salient object detection via fusing multi-level CNN features. IEEE TIP 29, 3321–3335 (2020)
Zhang, X., Wang, T., Qi, J., Lu, H., Wang, G.: Progressive attention guided recurrent network for salient object detection. In: CVPR, pp. 714–722 (2018)
Zhang, Z., Jin, W., Xu, J., Cheng, M.M.: Gradient-induced co-saliency detection. In: ECCV (2020)
Zhang, Z., Lin, Z., Xu, J., Jin, W., Lu, S.P., Fan, D.P.: Bilateral attention network for RGB-D salient object detection. arXiv preprint arXiv:2004.14582 (2020)
Zhao, J.X., Cao, Y., Fan, D.P., Cheng, M.M., Li, X.Y., Zhang, L.: Contrast prior and fluid pyramid integration for RGBD salient object detection. In: CVPR, pp. 3927–3936 (2019)
Zhao, J.X., Liu, J.J., Fan, D.P., Cao, Y., Yang, J., Cheng, M.M.: EGNet: edge guidance network for salient object detection. In: CVPR, pp. 8779–8788 (2019)
Zhu, C., Cai, X., Huang, K., Li, T.H., Li, G.: PDNet: prior-model guided depth-enhanced network for salient object detection. In: ICME, pp. 199–204 (2019)
Zhu, C., Li, G.: A three-pathway psychobiological framework of salient object detection using stereoscopic technology. In: ICCVW, pp. 3008–3014 (2017)
Zhu, C., Li, G., Wang, W., Wang, R.: An innovative salient object detection using center-dark channel prior. In: ICCVW, pp. 1509–1515 (2017)
Acknowledgments
This work was supported by the Major Project for New Generation of AI Grant (NO. 2018AAA0100403), NSFC (NO. 61876094, U1933114), Natural Science Foundation of Tianjin, China (NO. 18JCYBJC15400, 18ZXZNGX00110), the Open Project Program of the National Laboratory of Pattern Recognition (NLPR), and the Fundamental Research Funds for the Central Universities.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Fan, DP., Zhai, Y., Borji, A., Yang, J., Shao, L. (2020). BBS-Net: RGB-D Salient Object Detection with a Bifurcated Backbone Strategy Network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12357. Springer, Cham. https://doi.org/10.1007/978-3-030-58610-2_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-58610-2_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58609-6
Online ISBN: 978-3-030-58610-2
eBook Packages: Computer ScienceComputer Science (R0)