Single Image Super-Resolution via a Holistic Attention Network

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12357)


Informative features play a crucial role in the single image super-resolution task. Channel attention has been demonstrated to be effective for preserving information-rich features in each layer. However, channel attention treats each convolution layer as a separate process that misses the correlation among different layers. To address this problem, we propose a new holistic attention network (HAN), which consists of a layer attention module (LAM) and a channel-spatial attention module (CSAM), to model the holistic interdependencies among layers, channels, and positions. Specifically, the proposed LAM adaptively emphasizes hierarchical features by considering correlations among layers. Meanwhile, CSAM learns the confidence at all the positions of each channel to selectively capture more informative features. Extensive experiments demonstrate that the proposed HAN performs favorably against the state-of-the-art single image super-resolution approaches.


Super-resolution Holistic attention Layer attention Channel-spatial attention 



This work is supported by the National Key R&D Program of China under Grant 2019YFB1406500, National Natural Science Foundation of China (No. 61971016, U1605252, 61771369), Fundamental Research Funds of Central Universities (Grant No. N160504007), Beijing Natural Science Foundation (No. L182057), Peng Cheng Laboratory Project of Guangdong Province PCL2018KP004, and the Shaanxi Provincial Natural Science Basic Research Plan (2019JM-557).

Supplementary material

504453_1_En_12_MOESM1_ESM.pdf (35.8 mb)
Supplementary material 1 (pdf 36691 KB)


  1. 1.
    Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: BMVC (2012)Google Scholar
  2. 2.
    Dai, T., Cai, J., Zhang, Y., Xia, S.T., Zhang, L.: Second-order attention network for single image super-resolution. In: CVPR (2019)Google Scholar
  3. 3.
    Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). Scholar
  4. 4.
    Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 391–407. Springer, Cham (2016). Scholar
  5. 5.
    Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014)Google Scholar
  6. 6.
    Haris, M., Shakhnarovich, G., Ukita, N.: Deep back-projection networks for super-resolution. In: CVPR (2018)Google Scholar
  7. 7.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)Google Scholar
  8. 8.
    Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR (2018)Google Scholar
  9. 9.
    Hu, Y., Li, J., Huang, Y., Gao, X.: Channel-wise and spatial feature modulation network for single image super-resolution. IEEE Trans. Circ. Syst. Video Technol. (2019)Google Scholar
  10. 10.
    Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR (2017)Google Scholar
  11. 11.
    Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: CVPR (2015)Google Scholar
  12. 12.
    Huang, S., Sun, J., Yang, Y., Fang, Y., Lin, P., Que, Y.: Robust single-image super-resolution based on adaptive edge-preserving smoothing regularization. TIP 27(6), 2650–2663 (2018)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. TPAMI 35(1), 221–231 (2012)CrossRefGoogle Scholar
  14. 14.
    Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). Scholar
  15. 15.
    Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: CVPR (2016)Google Scholar
  16. 16.
    Kim, J., Kwon Lee, J., Mu Lee, K.: Deeply-recursive convolutional network for image super-resolution. In: CVPR (2016)Google Scholar
  17. 17.
    Kim, J.H., Choi, J.H., Cheon, M., Lee, J.S.: Ram: Residual attention module for single image super-resolution. arXiv preprint arXiv:1811.12043 (2018)
  18. 18.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
  19. 19.
    Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Deep Laplacian Pyramid Networks for fast and accurate super-resolution. In: CVPR (2017)Google Scholar
  20. 20.
    Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR (2017)Google Scholar
  21. 21.
    Li, Z., Yang, J., Liu, Z., Yang, X., Jeon, G., Wu, W.: Feedback network for image super-resolution. In: CVPR (2019)Google Scholar
  22. 22.
    Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: CVPR (2017)Google Scholar
  23. 23.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV (2001)Google Scholar
  24. 24.
    Matsui, Y., et al.: Sketch-based manga retrieval using manga109 dataset. Multimedia Tools Appl. 76(20), 21811–21838 (2016). Scholar
  25. 25.
    Peleg, T., Elad, M.: A statistical prediction model based on sparse representations for single image super-resolution. TIP 23(6), 2569–2582 (2014)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Ren, W., Yang, J., Deng, S., Wipf, D., Cao, X., Tong, X.: Face video deblurring using 3D facial priors. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9388–9397 (2019)Google Scholar
  27. 27.
    Ren, W., et al.: Deep non-blind deconvolution via generalized low-rank approximation. In: Advances in Neural Information Processing Systems, pp. 297–307 (2018)Google Scholar
  28. 28.
    Sajjadi, M.S., Scholkopf, B., Hirsch, M.: EnhanceNet: single image super-resolution through automated texture synthesis. In: ICCV (2017)Google Scholar
  29. 29.
    Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: CVPR (2016)Google Scholar
  30. 30.
    Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual network. In: CVPR (2017)Google Scholar
  31. 31.
    Tai, Y., Yang, J., Liu, X., Xu, C.: MemNet: a persistent memory network for image restoration. In: ICCV (2017)Google Scholar
  32. 32.
    Timofte, R., Agustsson, E., Van Gool, L., Yang, M.H., Zhang, L.: NTIRE 2017 challenge on single image super-resolution: methods and results. In: CVPRW (2017)Google Scholar
  33. 33.
    Wang, Z., Liu, D., Yang, J., Han, W., Huang, T.: Deep networks for image super-resolution with sparse prior. In: ICCV (2015)Google Scholar
  34. 34.
    Woo, S., Park, J., Lee, J.Y., So Kweon, I.: CBAM: convolutional block attention module. In: ECCV (2018)Google Scholar
  35. 35.
    Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution as sparse representation of raw image patches. In: CVPR (2008)Google Scholar
  36. 36.
    Zeyde, Roman, Elad, Michael, Protter, Matan: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). Scholar
  37. 37.
    Zhang, K., Zuo, W., Gu, S., Zhang, L.: Learning deep CNN denoiser prior for image restoration. In: CVPR (2017)Google Scholar
  38. 38.
    Zhang, K., Zuo, W., Zhang, L.: Learning a single convolutional super-resolution network for multiple degradations. In: CVPR (2018)Google Scholar
  39. 39.
    Zhang, L., Wu, X.: An edge-guided image interpolation algorithm via directional filtering and data fusion. TIP 15(8), 2226–2238 (2006)Google Scholar
  40. 40.
    Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: ECCV (2018)Google Scholar
  41. 41.
    Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: CVPR (2018)Google Scholar
  42. 42.
    Zhang, Z., Wang, Z., Lin, Z., Qi, H.: Image super-resolution by neural texture transfer. In: CVPR (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Northeastern UniversityShenyangChina
  2. 2.Xidian UniversityXi’anChina
  3. 3.SKLOIS, IIE, CASBeijingChina
  4. 4.Peng Cheng Laboratory, Cyberspace Security Research CenterShenzhenChina
  5. 5.ANUCanberraAustralia
  6. 6.AI Labs, Didi ChuxingBeijingChina

Personalised recommendations