Advertisement

Take an Emotion Walk: Perceiving Emotions from Gaits Using Hierarchical Attention Pooling and Affective Mapping

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12355)

Abstract

We present an autoencoder-based semi-supervised approach to classify perceived human emotions from walking styles obtained from videos or motion-captured data and represented as sequences of 3D poses. Given the motion on each joint in the pose at each time step extracted from 3D pose sequences, we hierarchically pool these joint motions in a bottom-up manner in the encoder, following the kinematic chains in the human body. We also constrain the latent embeddings of the encoder to contain the space of psychologically-motivated affective features underlying the gaits. We train the decoder to reconstruct the motions per joint per time step in a top-down manner from the latent embeddings. For the annotated data, we also train a classifier to map the latent embeddings to emotion labels. Our semi-supervised approach achieves a mean average precision of 0.84 on the Emotion-Gait benchmark dataset, which contains both labeled and unlabeled gaits collected from multiple sources. We outperform current state-of-art algorithms for both emotion recognition and action recognition from 3D gaits by 7%–23% on the absolute. More importantly, we improve the average precision by 10%–50% on the absolute on classes that each makes up less than 25% of the labeled part of the Emotion-Gait benchmark dataset.

Supplementary material

504449_1_En_9_MOESM1_ESM.zip (67.3 mb)
Supplementary material 1 (zip 68877 KB)

References

  1. 1.
    CMU graphics lab motion capture database (2018). http://mocap.cs.cmu.edu/
  2. 2.
    Ahsan, U., Sun, C., Essa, I.: DiscrimNet: semi-supervised action recognition from videos using generative adversarial networks. arXiv preprint arXiv:1801.07230 (2018)
  3. 3.
    Arunnehru, J., Kalaiselvi Geetha, M.: Automatic human emotion recognition in surveillance video. In: Dey, N., Santhi, V. (eds.) Intelligent Techniques in Signal Processing for Multimedia Security. SCI, vol. 660, pp. 321–342. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-44790-2_15CrossRefGoogle Scholar
  4. 4.
    Babu, A.R., Rajavenkatanarayanan, A., Brady, J.R., Makedon, F.: Multimodal approach for cognitive task performance prediction from body postures, facial expressions and EEG signal. In: Proceedings of the Workshop on Modeling Cognitive Processes from Multimodal Data, p. 2. ACM (2018)Google Scholar
  5. 5.
    Badler, N.I., Phillips, C.B., Webber, B.L.: Simulating Humans: Computer Graphics Animation and Control. Oxford University Press, Oxford (1993)zbMATHGoogle Scholar
  6. 6.
    Barrett, L.F.: How Emotions are Made: The Secret Life of the Brain. Houghton Mifflin Harcourt, Boston (2017)Google Scholar
  7. 7.
    Bauer, A., et al.: The autonomous city explorer: towards natural human-robot interaction in urban environments. IJSR 1(2), 127–140 (2009)Google Scholar
  8. 8.
    Bengio, S., Vinyals, O., Jaitly, N., Shazeer, N.: Scheduled sampling for sequence prediction with recurrent neural networks. In: Advances in Neural Information Processing Systems, pp. 1171–1179 (2015)Google Scholar
  9. 9.
    Bhattacharya, U., Mittal, T., Chandra, R., Randhavane, T., Bera, A., Manocha, D.: STEP: spatial temporal graph convolutional networks for emotion perception from gaits. In: AAAI, pp. 1342–1350 (2020)Google Scholar
  10. 10.
    Cai, H., Bai, C., Tai, Y.-W., Tang, C.-K.: Deep video generation, prediction and completion of human action sequences. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 374–390. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01216-8_23CrossRefGoogle Scholar
  11. 11.
    Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)Google Scholar
  12. 12.
    Chen, Y., Hou, W., Cheng, X., Li, S.: Joint learning for emotion classification and emotion cause detection. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 646–651 (2018)Google Scholar
  13. 13.
    Choutas, V., Weinzaepfel, P., Revaud, J., Schmid, C.: PoTion: pose motion representation for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7024–7033 (2018)Google Scholar
  14. 14.
    Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). arXiv preprint arXiv:1511.07289 (2015)
  15. 15.
    Crenn, A., Khan, R.A., Meyer, A., Bouakaz, S.: Body expression recognition from animated 3D skeleton. In: IC3D, pp. 1–7. IEEE (2016)Google Scholar
  16. 16.
    Daoudi, M., Berretti, S., Pala, P., Delevoye, Y., Del Bimbo, A.: Emotion recognition by body movement representation on the manifold of symmetric positive definite matrices. In: Battiato, S., Gallo, G., Schettini, R., Stanco, F. (eds.) ICIAP 2017. LNCS, vol. 10484, pp. 550–560. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68560-1_49CrossRefGoogle Scholar
  17. 17.
    Ekman, P., Friesen, W.V.: Head and body cues in the judgment of emotion: a reformulation. Percept. Mot. Skills 24, 711–724 (1967)CrossRefGoogle Scholar
  18. 18.
    Ekman, P., Friesen, W.V.: The repertoire of nonverbal behavior: categories, origins, usage, and coding. Semiotica 1(1), 49–98 (1969)CrossRefGoogle Scholar
  19. 19.
    Fabian Benitez-Quiroz, C., Srinivasan, R., Martinez, A.M.: EmotioNet: an accurate, real-time algorithm for the automatic annotation of a million facial expressions in the wild. In: CVPR (2016)Google Scholar
  20. 20.
    Fernández-Dols, J.M., Ruiz-Belda, M.A.: Expression of emotion versus expressions of emotions. In: Russell, J.A., Fernández-Dols, J.M., Manstead, A.S.R., Wellenkamp, J.C. (eds.) Everyday Conceptions of Emotion. ASID, vol. 81, pp. 505–522. Springer, Dordrecht (1995).  https://doi.org/10.1007/978-94-015-8484-5_29CrossRefGoogle Scholar
  21. 21.
    Grassia, F.S.: Practical parameterization of rotations using the exponential map. J. Graph. Tools 3(3), 29–48 (1998)CrossRefGoogle Scholar
  22. 22.
    Gross, M.M., Crane, E.A., Fredrickson, B.L.: Effort-shape and kinematic assessment of bodily expression of emotion during gait. Hum. Mov. Sci. 31(1), 202–221 (2012)CrossRefGoogle Scholar
  23. 23.
    Habibie, I., Holden, D., Schwarz, J., Yearsley, J., Komura, T.: A recurrent variational autoencoder for human motion synthesis. In: Proceedings of the British Machine Vision Conference (BMVC) (2017)Google Scholar
  24. 24.
    Harvey, F.G., Roy, J., Kanaa, D., Pal, C.: Recurrent semi-supervised classification and constrained adversarial generation with motion capture data. Image Vis. Comput. 78, 42–52 (2018)CrossRefGoogle Scholar
  25. 25.
    Hoffmann, H., et al.: Mapping discrete emotions into the dimensional space: an empirical approach. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3316–3320. IEEE (2012)Google Scholar
  26. 26.
    Holden, D., Saito, J., Komura, T.: A deep learning framework for character motion synthesis and editing. ACM Trans. Graph. (TOG) 35(4), 138 (2016)CrossRefGoogle Scholar
  27. 27.
    Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)
  28. 28.
    Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6M: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2013)CrossRefGoogle Scholar
  29. 29.
    Jacob, A., Mythili, P.: Prosodic feature based speech emotion recognition at segmental and supra segmental levels. In: SPICES, pp. 1–5. IEEE (2015)Google Scholar
  30. 30.
    Kanazawa, A., Zhang, J.Y., Felsen, P., Malik, J.: Learning 3D human dynamics from video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5614–5623 (2019)Google Scholar
  31. 31.
    Karg, M., Kuhnlenz, K., Buss, M.: Recognition of affect based on gait patterns. Cybernetics 40(4), 1050–1061 (2010)Google Scholar
  32. 32.
    Khodabandeh, M., Reza Vaezi Joze, H., Zharkov, I., Pradeep, V.: DIY human action dataset generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1448–1458 (2018)Google Scholar
  33. 33.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
  34. 34.
    Kleinsmith, A., Bianchi-Berthouze, N.: Affective body expression perception and recognition: a survey. IEEE Trans. Affect. Comput. 4(1), 15–33 (2013)CrossRefGoogle Scholar
  35. 35.
    Kosti, R., Alvarez, J., Recasens, A., Lapedriza, A.: Context based emotion recognition using EMOTIC dataset. IEEE Trans. Pattern Anal. Mach. Intell. 42, 2755–2766 (2019)Google Scholar
  36. 36.
    Lee, J., Kim, S., Kim, S., Park, J., Sohn, K.: Context-aware emotion recognition networks. arXiv preprint arXiv:1908.05913 (2019)
  37. 37.
    Liu, Z., Zhang, H., Chen, Z., Wang, Z., Ouyang, W.: Disentangling and unifying graph convolutions for skeleton-based action recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)Google Scholar
  38. 38.
    Ma, Y., Paterson, H.M., Pollick, F.E.: A motion capture library for the study of identity, gender, and emotion perception from biological motion. Behav. Res. Methods 38(1), 134–141 (2006)CrossRefGoogle Scholar
  39. 39.
    Meeren, H.K., van Heijnsbergen, C.C., de Gelder, B.: Rapid perceptual integration of facial expression and emotional body language. Proc. NAS 102(45), 16518–16523 (2005)CrossRefGoogle Scholar
  40. 40.
    Mehrabian, A.: Analysis of the big-five personality factors in terms of the pad temperament model. Aust. J. Psychol. 48(2), 86–92 (1996)CrossRefGoogle Scholar
  41. 41.
    Mehrabian, A., Russell, J.A.: An Approach to Environmental Psychology. The MIT Press, Cambridge (1974)Google Scholar
  42. 42.
    Michalak, J., Troje, N.F., Fischer, J., Vollmar, P., Heidenreich, T., Schulte, D.: Embodiment of sadness and depression—Gait patterns associated with dysphoric mood. Psychosom. Med. 71(5), 580–587 (2009)CrossRefGoogle Scholar
  43. 43.
    Mittal, T., Guhan, P., Bhattacharya, U., Chandra, R., Bera, A., Manocha, D.: EmotiCon: context-aware multimodal emotion recognition using Frege’s principle. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14234–14243 (2020)Google Scholar
  44. 44.
    Montepare, J.M., Goldstein, S.B., Clausen, A.: The identification of emotions from gait information. J. Nonverbal Behav. 11(1), 33–42 (1987)CrossRefGoogle Scholar
  45. 45.
    Narang, S., Best, A., Feng, A., Kang, S.H., Manocha, D., Shapiro, A.: Motion recognition of self and others on realistic 3D avatars. Comput. Anim. Virtual Worlds 28(3–4), e1762 (2017)CrossRefGoogle Scholar
  46. 46.
    Narayanan, V., Manoghar, B.M., Dorbala, V.S., Manocha, D., Bera, A.: ProxEmo: gait-based emotion learning and multi-view proxemic fusion for socially-aware robot navigation. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020. IEEE (2020)Google Scholar
  47. 47.
    Nisbett, R.E., Wilson, T.D.: Telling more than we can know: verbal reports on mental processes. Psychol. Rev. 84(3), 231 (1977)CrossRefGoogle Scholar
  48. 48.
    Pavllo, D., Feichtenhofer, C., Grangier, D., Auli, M.: 3D human pose estimation in video with temporal convolutions and semi-supervised training. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7753–7762 (2019)Google Scholar
  49. 49.
    Pavllo, D., Grangier, D., Auli, M.: QuaterNet: a quaternion-based recurrent model for human motion. arXiv preprint arXiv:1805.06485 (2018)
  50. 50.
    Randhavane, T., Bera, A., Kapsaskis, K., Bhattacharya, U., Gray, K., Manocha, D.: Identifying emotions from walking using affective and deep features. arXiv preprint arXiv:1906.11884 (2019)
  51. 51.
    Randhavane, T., Bera, A., Kapsaskis, K., Sheth, R., Gray, K., Manocha, D.: EVA: generating emotional behavior of virtual agents using expressive features of gait and gaze. In: ACM Symposium on Applied Perception 2019, pp. 1–10 (2019)Google Scholar
  52. 52.
    Randhavane, T., Bhattacharya, U., Kapsaskis, K., Gray, K., Bera, A., Manocha, D.: The Liar’s walk: detecting deception with gait and gesture. arXiv preprint arXiv:1912.06874 (2019)
  53. 53.
    Rao, K.S., Koolagudi, S.G., Vempada, R.R.: Emotion recognition from speech using global and local prosodic features. Int. J. Speech Technol. 16, 143–160 (2013)CrossRefGoogle Scholar
  54. 54.
    Riggio, H.R.: Emotional expressiveness. In: Zeigler-Hill, V., Shackelford, T. (eds.) Encyclopedia of Personality and Individual Differences. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-28099-8_508-1CrossRefGoogle Scholar
  55. 55.
    Rivas, J.J., Orihuela-Espina, F., Sucar, L.E., Palafox, L., Hernández-Franco, J., Bianchi-Berthouze, N.: Detecting affective states in virtual rehabilitation. In: Proceedings of the 9th International Conference on Pervasive Computing Technologies for Healthcare, pp. 287–292. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) (2015)Google Scholar
  56. 56.
    Roether, C.L., Omlor, L., Christensen, A., Giese, M.A.: Critical features for the perception of emotion from gait. J. Vis. 9(6), 15–15 (2009)CrossRefGoogle Scholar
  57. 57.
    Schurgin, M., Nelson, J., Iida, S., Ohira, H., Chiao, J., Franconeri, S.: Eye movements during emotion recognition in faces. J. Vis. 14(13), 14–14 (2014)CrossRefGoogle Scholar
  58. 58.
    Shahroudy, A., Liu, J., Ng, T.T., Wang, G.: NTU RGB+D: a large scale dataset for 3D human activity analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1010–1019 (2016)Google Scholar
  59. 59.
    Shi, L., Zhang, Y., Cheng, J., Lu, H.: Skeleton-based action recognition with directed graph neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7912–7921 (2019)Google Scholar
  60. 60.
    Shi, L., Zhang, Y., Cheng, J., Lu, H.: Two-stream adaptive graph convolutional networks for skeleton-based action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12026–12035 (2019)Google Scholar
  61. 61.
    Si, C., Chen, W., Wang, W., Wang, L., Tan, T.: An attention enhanced graph convolutional LSTM network for skeleton-based action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1227–1236 (2019)Google Scholar
  62. 62.
    Starke, S., Zhang, H., Komura, T., Saito, J.: Neural state machine for character-scene interactions. ACM Trans. Graph. 38(6), 209 (2019)CrossRefGoogle Scholar
  63. 63.
    Strapparava, C., Mihalcea, R.: Learning to identify emotions in text. In: Proceedings of the 2008 ACM Symposium on Applied Computing, pp. 1556–1560. ACM (2008)Google Scholar
  64. 64.
    Venture, G., Kadone, H., Zhang, T., Grèzes, J., Berthoz, A., Hicheur, H.: Recognizing emotions conveyed by human gait. IJSR 6(4), 621–632 (2014)Google Scholar
  65. 65.
    Wang, L., Huynh, D.Q., Koniusz, P.: A comparative review of recent kinect-based action recognition algorithms. arXiv preprint arXiv:1906.09955 (2019)
  66. 66.
    Wu, Z., Fu, Y., Jiang, Y.G., Sigal, L.: Harnessing object and scene semantics for large-scale video understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3112–3121 (2016)Google Scholar
  67. 67.
    Yan, A., Wang, Y., Li, Z., Qiao, Y.: PA3D: pose-action 3D machine for video recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7922–7931 (2019)Google Scholar
  68. 68.
    Yan, S., Li, Z., Xiong, Y., Yan, H., Lin, D.: Convolutional sequence generation for skeleton-based action synthesis. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4394–4402 (2019)Google Scholar
  69. 69.
    Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: AAAI (2018)Google Scholar
  70. 70.
    Yang, C., Wang, Z., Zhu, X., Huang, C., Shi, J., Lin, D.: Pose guided human video generation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 204–219. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01249-6_13CrossRefGoogle Scholar
  71. 71.
    Zhang, J.Y., Felsen, P., Kanazawa, A., Malik, J.: Predicting 3D human dynamics from video. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7114–7123 (2019)Google Scholar
  72. 72.
    Zhang, S., et al.: Fusing geometric features for skeleton-based action recognition using multilayer LSTM networks. IEEE Trans. Multimedia 20(9), 2330–2343 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of MarylandCollege ParkUSA
  2. 2.University of North CarolinaChapel HillUSA

Personalised recommendations