Skip to main content

RhyRNN: Rhythmic RNN for Recognizing Events in Long and Complex Videos

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12355))

Included in the following conference series:

Abstract

Though many successful approaches have been proposed for recognizing events in short and homogeneous videos, doing so with long and complex videos remains a challenge. One particular reason is that events in long and complex videos can consist of multiple heterogeneous sub-activities (in terms of rhythms, activity variants, composition order, etc.) within quite a long period. This fact brings about two main difficulties: excessive/varying length and complex video dynamic/rhythm. To address this, we propose Rhythmic RNN (RhyRNN) which is capable of handling long video sequences (up to 3,000 frames) as well as capturing rhythms at different scales. We also propose two novel modules: diversity-driven pooling (DivPool) and bilinear reweighting (BR), which consistently and hierarchically abstract higher-level information. We study the behavior of RhyRNN and empirically show that our method works well even when only event-level labels are available in the training stage (compared to algorithms requiring sub-activity labels for recognition), and thus is more practical when the sub-activity labels are missing or difficult to obtain. Extensive experiments on several public datasets demonstrate that, even without fine-tuning the feature backbones, our method can achieve promising performance for long and complex videos that contain multiple sub-activities.

T. Yu and Y. Li—Equal contribution.

This work was supported in part by a grant from ONR. Any opinions expressed in this material are those of the authors and do not necessarily reflect the views of ONR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We re-implemented the method TC [23] following the same setting but did not obtain the performance reported in their original paper. Since there is a large gap between our implementation and their results, we report the best performance of [23] in our implementation.

  2. 2.

    DivPool cannot work frame-wise since it selects only a portion of time stamps. Therefore we remove DivPool from the full setting.

References

  1. Antol, S., et al.: VQA: visual question answering. In: ICCV (2015)

    Google Scholar 

  2. Arjovsky, M., Shah, A., Bengio, Y.: Unitary evolution recurrent neural networks. In: ICML (2016)

    Google Scholar 

  3. Bilen, H., Fernando, B., Gavves, E., Vedaldi, A.: Action recognition with dynamic image networks. PAMI 40(12), 2799–2813 (2017)

    Article  Google Scholar 

  4. Bilen, H., Fernando, B., Gavves, E., Vedaldi, A., Gould, S.: Dynamic image networks for action recognition. In: CVPR (2016)

    Google Scholar 

  5. Campos, V., Jou, B., Giró-i Nieto, X., Torres, J., Chang, S.F.: Skip RNN: learning to skip state updates in recurrent neural networks. arXiv preprint arXiv:1708.06834 (2017)

  6. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: CVPR (2017)

    Google Scholar 

  7. Chao, Y.W., Vijayanarasimhan, S., Seybold, B., Ross, D.A., Deng, J., Sukthankar, R.: Rethinking the faster R-CNN architecture for temporal action localization. In: CVPR (2018)

    Google Scholar 

  8. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  9. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: CVPR (2017)

    Google Scholar 

  10. Donahue, J., et al.: Long-term recurrent convolutional networks for visual recognition and description. In: CVPR (2015)

    Google Scholar 

  11. Du, Y., Wang, W., Wang, L.: Hierarchical recurrent neural network for skeleton based action recognition. In: CVPR (2015)

    Google Scholar 

  12. Duan, L., Xu, D., Tsang, I.W.H., Luo, J.: Visual event recognition in videos by learning from web data. PAMI 34(9), 1667–1680 (2012)

    Article  Google Scholar 

  13. Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition. In: ICCV (2019)

    Google Scholar 

  14. Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for video action recognition. In: CVPR (2016)

    Google Scholar 

  15. Fernando, B., Gavves, E., Oramas, J., Ghodrati, A., Tuytelaars, T.: Rank pooling for action recognition. PAMI 39(4), 773–787 (2016)

    Article  Google Scholar 

  16. Fernando, B., Tan, C., Bilen, H.: Weakly supervised Gaussian networks for action detection. In: WACV (2020)

    Google Scholar 

  17. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with LSTM (1999)

    Google Scholar 

  18. Girdhar, R., Ramanan, D.: Attentional pooling for action recognition. In: NIPS (2017)

    Google Scholar 

  19. Gong, B., Chao, W.L., Grauman, K., Sha, F.: Diverse sequential subset selection for supervised video summarization. In: NIPS (2014)

    Google Scholar 

  20. Hara, K., Kataoka, H., Satoh, Y.: Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and imagenet? In: CVPR (2018)

    Google Scholar 

  21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  22. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  23. Hussein, N., Gavves, E., Smeulders, A.W.: Timeception for complex action recognition. In: CVPR (2019)

    Google Scholar 

  24. Hussein, N., Gavves, E., Smeulders, A.W.: VideoGraph: recognizing minutes-long human activities in videos. In: ICCVW (2019)

    Google Scholar 

  25. Jiang, Y.G., Bhattacharya, S., Chang, S.F., Shah, M.: High-level event recognition in unconstrained videos. Int. J. Multimedia Inf. Retrieval 2(2), 73–101 (2013)

    Article  Google Scholar 

  26. Kanuparthi, B., Arpit, D., Kerg, G., Ke, N.R., Mitliagkas, I., Bengio, Y.: h-detach: Modifying the LSTM gradient towards better optimization. In: ICLR (2019)

    Google Scholar 

  27. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: CVPR (2014)

    Google Scholar 

  28. Kay, W., et al.: The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017)

  29. Kim, J.H., Jun, J., Zhang, B.T.: Bilinear attention networks. In: NIPS (2018)

    Google Scholar 

  30. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video database for human motion recognition. In: ICCV (2011)

    Google Scholar 

  31. Kuehne, H., Arslan, A., Serre, T.: The language of actions: recovering the syntax and semantics of goal-directed human activities. In: CVPR (2014)

    Google Scholar 

  32. Kuehne, H., Gall, J., Serre, T.: An end-to-end generative framework for video segmentation and recognition. In: WACV (2016)

    Google Scholar 

  33. Lan, T., Zhu, Y., Roshan Zamir, A., Savarese, S.: Action recognition by hierarchical mid-level action elements. In: ICCV (2015)

    Google Scholar 

  34. Lee, Y.J., Ghosh, J., Grauman, K.: Discovering important people and objects for egocentric video summarization. In: CVPR (2012)

    Google Scholar 

  35. Li, S., Li, W., Cook, C., Zhu, C., Gao, Y.: Independently recurrent neural network (IndRNN): building a longer and deeper RNN. In: CVPR (2018)

    Google Scholar 

  36. Nguyen, P., Liu, T., Prasad, G., Han, B.: Weakly supervised action localization by sparse temporal pooling network. In: CVPR (2018)

    Google Scholar 

  37. Oh, S., et al.: A large-scale benchmark dataset for event recognition in surveillance video. In: CVPR (2011)

    Google Scholar 

  38. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)

    Google Scholar 

  39. Piergiovanni, A., Ryoo, M.S.: Learning latent super-events to detect multiple activities in videos. In: CVPR (2018)

    Google Scholar 

  40. Rashid, M., Kjellström, H., Lee, Y.J.: Action graphs: Weakly-supervised action localization with graph convolution networks. arXiv preprint arXiv:2002.01449 (2020)

  41. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local SVM approach. In: ICPR (2004)

    Google Scholar 

  42. Sharma, S., Kiros, R., Salakhutdinov, R.: Action recognition using visual attention. In: NIPS Time Series Workshop (2015)

    Google Scholar 

  43. Shou, Z., Wang, D., Chang, S.F.: Temporal action localization in untrimmed videos via multi-stage CNNs. In: CVPR (2016)

    Google Scholar 

  44. Sigurdsson, G.A., Divvala, S., Farhadi, A., Gupta, A.: Asynchronous temporal fields for action recognition. In: CVPR (2017)

    Google Scholar 

  45. Sigurdsson, G.A., Varol, G., Wang, X., Farhadi, A., Laptev, I., Gupta, A.: Hollywood in homes: crowdsourcing data collection for activity understanding. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 510–526. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_31

    Chapter  Google Scholar 

  46. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: NIPS (2014)

    Google Scholar 

  47. Soomro, K., Zamir, A.R., Shah, M., Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. CoRR (2012)

    Google Scholar 

  48. Tapaswi, M., Zhu, Y., Stiefelhagen, R., Torralba, A., Urtasun, R., Fidler, S.: MovieQA: understanding stories in movies through question-answering. In: CVPR (2016)

    Google Scholar 

  49. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: ICCV (2015)

    Google Scholar 

  50. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: CVPR (2018)

    Google Scholar 

  51. Tran, S.D., Davis, L.S.: Event modeling and recognition using Markov logic networks. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 610–623. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88688-4_45

    Chapter  Google Scholar 

  52. Veeriah, V., Zhuang, N., Qi, G.J.: Differential recurrent neural networks for action recognition. In: ICCV (2015)

    Google Scholar 

  53. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: ICCV (2013)

    Google Scholar 

  54. Wang, L., Qiao, Y., Tang, X.: Action recognition with trajectory-pooled deep-convolutional descriptors. In: CVPR (2015)

    Google Scholar 

  55. Wang, L., et al.: Temporal segment networks: towards good practices for deep action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_2

    Chapter  Google Scholar 

  56. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR (2018)

    Google Scholar 

  57. Wang, X., Ji, Q.: Hierarchical context modeling for video event recognition. PAMI 39(9), 1770–1782 (2017)

    Article  Google Scholar 

  58. Wang, Y., Wang, S., Tang, J., O’Hare, N., Chang, Y., Li, B.: Hierarchical attention network for action recognition in videos. arXiv preprint arXiv:1607.06416 (2016)

  59. Wu, C.Y., Feichtenhofer, C., Fan, H., He, K., Krahenbuhl, P., Girshick, R.: Long-term feature banks for detailed video understanding. In: CVPR (2019)

    Google Scholar 

  60. Wu, Y., Zhang, S., Zhang, Y., Bengio, Y., Salakhutdinov, R.R.: On multiplicative integration with recurrent neural networks. In: NIPS (2016)

    Google Scholar 

  61. Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature learning: speed-accuracy trade-offs in video classification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 318–335. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_19

    Chapter  Google Scholar 

  62. Xu, S., Cheng, Y., Gu, K., Yang, Y., Chang, S., Zhou, P.: Jointly attentive spatial-temporal pooling networks for video-based person re-identification. In: ICCV (2017)

    Google Scholar 

  63. Xu, Y., et al.: Segregated temporal assembly recurrent networks for weakly supervised multiple action detection. In: AAAI (2019)

    Google Scholar 

  64. Xu, Z., Yang, Y., Hauptmann, A.G.: A discriminative CNN video representation for event detection. In: CVPR (2015)

    Google Scholar 

  65. Yeung, S., Russakovsky, O., Jin, N., Andriluka, M., Mori, G., Fei-Fei, L.: Every moment counts: dense detailed labeling of actions in complex videos. Int. J. Comput. Vision 126(2–4), 375–389 (2018)

    Article  MathSciNet  Google Scholar 

  66. Zhang, K., Chao, W.-L., Sha, F., Grauman, K.: Video summarization with long short-term memory. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 766–782. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_47

    Chapter  Google Scholar 

  67. Zhou, B., Andonian, A., Oliva, A., Torralba, A.: Temporal relational reasoning in videos. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 831–846. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_49

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoxin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, T., Li, Y., Li, B. (2020). RhyRNN: Rhythmic RNN for Recognizing Events in Long and Complex Videos. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12355. Springer, Cham. https://doi.org/10.1007/978-3-030-58607-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58607-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58606-5

  • Online ISBN: 978-3-030-58607-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics