Skip to main content

Consistency-Based Semi-supervised Active Learning: Towards Minimizing Labeling Cost

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12355))

Abstract

Active learning (AL) combines data labeling and model training to minimize the labeling cost by prioritizing the selection of high value data that can best improve model performance. In pool-based active learning, accessible unlabeled data are not used for model training in most conventional methods. Here, we propose to unify unlabeled sample selection and model training towards minimizing labeling cost, and make two contributions towards that end. First, we exploit both labeled and unlabeled data using semi-supervised learning (SSL) to distill information from unlabeled data during the training stage. Second, we propose a consistency-based sample selection metric that is coherent with the training objective such that the selected samples are effective at improving model performance. We conduct extensive experiments on image classification tasks. The experimental results on CIFAR-10, CIFAR-100 and ImageNet demonstrate the superior performance of our proposed method with limited labeled data, compared to the existing methods and the alternative AL and SSL combinations. Additionally, we also study an important yet under-explored problem – “When can we start learning-based AL selection?”. We propose a measure that is empirically correlated with the AL target loss and is potentially useful for determining the proper starting point of learning-based AL methods .

M. Gao—Work done while the author was an intern at Google; now at Salesforce Research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Athiwaratkun, B., Finzi, M., Izmailov, P., Wilson, A.G.: There are many consistent explanations of unlabeled data: why you should average. In: ICLR (2019)

    Google Scholar 

  2. Balcan, M.F., Beygelzimer, A., Langford, J.: Agnostic active learning. J. Comput. Syst. Sci. 75(1), 78–89 (2009)

    Article  MathSciNet  Google Scholar 

  3. Balcan, M.F., Broder, A., Zhang, T.: Margin based active learning. In: International Conference on Computational Learning Theory (2007)

    Google Scholar 

  4. Beluch, W.H., Genewein, T., Nürnberger, A., Köhler, J.M.: The power of ensembles for active learning in image classification (2018)

    Google Scholar 

  5. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.: Mixmatch: a holistic approach to semi-supervised learning. arXiv preprint arXiv:1905.02249 (2019)

  6. Brinker, K.: Incorporating diversity in active learning with support vector machines. In: ICML (2003)

    Google Scholar 

  7. Cohn, D., Atlas, L., Ladner, R.: Improving generalization with active learning. Mach. Learn. 15(2), 201–221 (1994)

    Google Scholar 

  8. Cortes, C., DeSalvo, G., Mohri, M., Zhang, N.: Agnostic active learning without constraints. In: ICML (2019)

    Google Scholar 

  9. Cortes, C., DeSalvo, G., Mohri, M., Zhang, N., Gentile, C.: Active learning with disagreement graphs. In: ICML (2019)

    Google Scholar 

  10. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: practical automated data augmentation with a reduced search space. arXiv preprint arXiv:1909.13719 (2019)

  11. Dasgupta, S., Hsu, D.: Hierarchical sampling for active learning. In: ICML (2008)

    Google Scholar 

  12. Dasgupta, S., Hsu, D.J., Monteleoni, C.: A general agnostic active learning algorithm. In: NIPS (2008)

    Google Scholar 

  13. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  14. Drugman, T., Pylkkonen, J., Kneser, R.: Active and semi-supervised learning in ASR: benefits on the acoustic and language models. arXiv preprint arXiv:1903.02852 (2019)

  15. Elhamifar, E., Sapiro, G., Yang, A., Shankar Sasrty, S.: A convex optimization framework for active learning. In: CVPR (2013)

    Google Scholar 

  16. Freytag, A., Rodner, E., Denzler, J.: Selecting influential examples: active learning with expected model output changes. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 562–577. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_37

    Chapter  Google Scholar 

  17. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: ICML (2016)

    Google Scholar 

  18. Gal, Y., Islam, R., Ghahramani, Z.: Deep Bayesian active learning with image data. In: ICML (2017)

    Google Scholar 

  19. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org

  20. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: ICML (2017)

    Google Scholar 

  21. Guo, Y.: Active instance sampling via matrix partition. In: NIPS (2010)

    Google Scholar 

  22. Hasan, M., Roy-Chowdhury, A.K.: Context aware active learning of activity recognition models. In: CVPR (2015)

    Google Scholar 

  23. Houlsby, N., Hernández-Lobato, J.M., Ghahramani, Z.: Cold-start active learning with robust ordinal matrix factorization. In: ICML (2014)

    Google Scholar 

  24. Iglesias, J.E., Konukoglu, E., Montillo, A., Tu, Z., Criminisi, A.: Combining generative and discriminative models for semantic segmentation of CT scans via active learning. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 25–36. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22092-0_3

    Chapter  Google Scholar 

  25. Joshi, A.J., Porikli, F., Papanikolopoulos, N.: Multi-class active learning for image classification. In: CVPR (2009)

    Google Scholar 

  26. Konyushkova, K., Sznitman, R., Fua, P.: Learning active learning from data. In: NIPS (2017)

    Google Scholar 

  27. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images. Technical report. Citeseer (2009)

    Google Scholar 

  28. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. In: ICLR (2017)

    Google Scholar 

  29. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: NIPS (2017)

    Google Scholar 

  30. Lewis, D.D., Catlett, J.: Heterogeneous uncertainty sampling for supervised learning. In: Machine Learning Proceedings 1994, pp. 148–156. Elsevier (1994)

    Google Scholar 

  31. Lewis, D.D., Gale, W.A.: A sequential algorithm for training text classifiers. In: SIGIR 1994, pp. 3–12 (1994)

    Google Scholar 

  32. Mac Aodha, O., Campbell, N.D., Kautz, J., Brostow, G.J.: Hierarchical subquery evaluation for active learning on a graph. In: CVPR (2014)

    Google Scholar 

  33. McCallumzy, A.K., Nigamy, K.: Employing EM and pool-based active learning for text classification. In: ICML (1998)

    Google Scholar 

  34. Nguyen, H.T., Smeulders, A.: Active learning using pre-clustering. In: ICML (2004)

    Google Scholar 

  35. Oliver, A., Odena, A., Raffel, C.A., Cubuk, E.D., Goodfellow, I.: Realistic evaluation of deep semi-supervised learning algorithms. In: NeurIPS (2018)

    Google Scholar 

  36. Rhee, P.K., Erdenee, E., Kyun, S.D., Ahmed, M.U., Jin, S.: Active and semi-supervised learning for object detection with imperfect data. Cogn. Syst. Res. 45, 109–123 (2017)

    Article  Google Scholar 

  37. Roth, D., Small, K.: Margin-based active learning for structured output spaces. In: ECML (2006)

    Google Scholar 

  38. Roy, N., McCallum, A.: Toward optimal active learning through Monte Carlo estimation of error reduction. In: ICML (2001)

    Google Scholar 

  39. Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach. In: ICLR (2018)

    Google Scholar 

  40. Settles, B., Craven, M., Ray, S.: Multiple-instance active learning. In: NIPS (2008)

    Google Scholar 

  41. Seung, H.S., Opper, M., Sompolinsky, H.: Query by committee. In: Proceedings of the Workshop on Computational Learning Theory (1992)

    Google Scholar 

  42. Siméoni, O., Budnik, M., Avrithis, Y., Gravier, G.: Rethinking deep active learning: using unlabeled data at model training. arXiv preprint arXiv:1911.08177 (2019)

  43. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  44. Sinha, S., Ebrahimi, S., Darrell, T.: Variational adversarial active learning. arXiv preprint arXiv:1904.00370 (2019)

  45. Sohn, K., et al.: Fixmatch: simplifying semi-supervised learning with consistency and confidence. arXiv preprint arXiv:2001.07685 (2020)

  46. Sohn, K., Zhang, Z., Li, C.L., Zhang, H., Lee, C.Y., Pfister, T.: A simple semi-supervised learning framework for object detection. arXiv preprint arXiv:2005.04757 (2020)

  47. Song, S., Berthelot, D., Rostamizadeh, A.: Combining mixmatch and active learning for better accuracy with fewer labels. arXiv preprint arXiv:1912.00594 (2019)

  48. Tomanek, K., Hahn, U.: Semi-supervised active learning for sequence labeling. In: ACL (2009)

    Google Scholar 

  49. Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. JMLR 2, 45–66 (2001)

    MATH  Google Scholar 

  50. Verma, V., Lamb, A., Kannala, J., Bengio, Y., Lopez-Paz, D.: Interpolation consistency training for semi-supervised learning. In: International Joint Conferences on Artifical Intelligence (2019)

    Google Scholar 

  51. Xie, Q., Dai, Z., Hovy, E., Luong, M.T., Le, Q.V.: Unsupervised data augmentation for consistency training. arXiv preprint arXiv:1904.12848 (2019)

  52. Yang, Y., Ma, Z., Nie, F., Chang, X., Hauptmann, A.G.: Multi-class active learning by uncertainty sampling with diversity maximization. IJCV 113(2), 113–127 (2015)

    Article  MathSciNet  Google Scholar 

  53. Yoo, D., Kweon, I.S.: Learning loss for active learning. In: CVPR (2019)

    Google Scholar 

  54. Zhang, Z., Zhang, H., Arik, S.O., Lee, H., Pfister, T.: Distilling effective supervision from severe label noise. In: CVPR (2020)

    Google Scholar 

  55. Zhu, X., Lafferty, J., Ghahramani, Z.: Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions. In: ICML Workshops (2003)

    Google Scholar 

Download references

Acknowledgment

Discussions with Giulia DeSalvo, Chih-kuan Yeh, Kihyuk Sohn, Chen Xing, and Wei Wei are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingfei Gao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 295 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, M., Zhang, Z., Yu, G., Arık, S.Ö., Davis, L.S., Pfister, T. (2020). Consistency-Based Semi-supervised Active Learning: Towards Minimizing Labeling Cost. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12355. Springer, Cham. https://doi.org/10.1007/978-3-030-58607-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58607-2_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58606-5

  • Online ISBN: 978-3-030-58607-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics