Skip to main content

Label-Efficient Learning on Point Clouds Using Approximate Convex Decompositions

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12355))

Abstract

The problems of shape classification and part segmentation from 3D point clouds have garnered increasing attention in the last few years. Both of these problems, however, suffer from relatively small training sets, creating the need for statistically efficient methods to learn 3D shape representations. In this paper, we investigate the use of Approximate Convex Decompositions (ACD) as a self-supervisory signal for label-efficient learning of point cloud representations. We show that using ACD to approximate ground truth segmentation provides excellent self-supervision for learning 3D point cloud representations that are highly effective on downstream tasks. We report improvements over the state-of-the-art for unsupervised representation learning on the ModelNet40 shape classification dataset and significant gains in few-shot part segmentation on the ShapeNetPart dataset. Our source code is publicly available (https://github.com/matheusgadelha/PointCloudLearningACD).

M. Gadelha and A. RoyChowdhury—Equal contribution.

A. RoyChowdhury—Now at Amazon, work done prior to joining.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/kmammou/v-hacd.

References

  1. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Representation learning and adversarial generation of 3D point clouds. arXiv preprint arXiv:1707.02392 (2017)

  2. Alliegro, A., Boscaini, D., Tommasi, T.: Joint supervised and self-supervised learning for 3D real-world challenges (2020). https://arxiv.org/abs/2004.07392

  3. Arthur, D., Vassilvitskii, S.: k-means++: The advantages of careful seeding. Technical report (2007)

    Google Scholar 

  4. Au, O.K.C., Zheng, Y., Chen, M., Xu, P., Tai, C.L.: Mesh segmentation with concavity-aware fields. IEEE Trans. Vis. Comput. Graph. 18(7), 1125–1134 (2011). https://doi.org/10.1109/TVCG.2011.131

    Article  Google Scholar 

  5. Bernard, C.: Convex partitions of polyhedra a lower bound and worst-case optimal algorithm. SIAM J. Comput. 13(3), 488–507 (1984). https://dl.acm.org/doi/10.1137/0213031

    Article  MathSciNet  Google Scholar 

  6. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 139–156. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_9

    Chapter  Google Scholar 

  7. Caron, M., Bojanowski, P., Mairal, J., Joulin, A.: Unsupervised pre-training of image features on non-curated data. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2959–2968 (2019)

    Google Scholar 

  8. Chang, A.X., et al.: ShapeNet: An information-rich 3D model repository. CoRR abs/1512.03012 (2015)

    Google Scholar 

  9. Chen, X., Golovinskiy, A., Funkhouser, T.: A benchmark for 3D mesh segmentation. ACM Trans. Graph. (Proc. SIGGRAPH) 28(3), 1–12 (2009)

    Article  Google Scholar 

  10. Chen, Z., Tagliasacchi, A., Zhang, H.: BSP-Net: generating compact meshes via binary space partitioning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  11. Chen, Z., Yin, K., Fisher, M., Chaudhuri, S., Zhang, H.: BAE-NET: branched autoencoder for shape co-segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 8490–8499 (2019)

    Google Scholar 

  12. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 539–546. IEEE (2005)

    Google Scholar 

  13. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, Hoboken (2012)

    MATH  Google Scholar 

  14. Demir, İ., Aliaga, D.G., Benes, B.: Near-convex decomposition and layering for efficient 3D printing. Addit. Manuf. 21, 383–394 (2018). https://doi.org/10.1016/j.addma.2018.03.008. http://www.sciencedirect.com/science/article/pii/S2214860417300386

    Article  Google Scholar 

  15. Deng, B., Genova, K., Yazdani, S., Bouaziz, S., Hinton, G., Tagliasacchi, A.: CvxNet: learnable convex decomposition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  16. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1422–1430 (2015)

    Google Scholar 

  17. Donahue, J., Simonyan, K.: Large scale adversarial representation learning. In: Advances in Neural Information Processing Systems, pp. 10541–10551 (2019)

    Google Scholar 

  18. Gadelha, M., Maji, S., Wang, R.: 3D shape generation using spatially ordered point clouds. In: British Machine Vision Conference (BMVC) (2017)

    Google Scholar 

  19. Gadelha, M., Wang, R., Maji, S.: Multiresolution tree networks for 3D point cloud processing. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 105–122. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_7

    Chapter  Google Scholar 

  20. Ghosh, M., Amato, N.M., Lu, Y., Lien, J.M.: Fast approximate convex decomposition using relative concavity. Comput. Aided Des. 45, 494–504 (2013)

    Article  MathSciNet  Google Scholar 

  21. Goyal, P., Mahajan, D., Gupta, A., Misra, I.: Scaling and benchmarking self-supervised visual representation learning. arXiv preprint arXiv:1905.01235 (2019)

  22. Groueix, T., Fisher, M., Kim, V.G., Russell, B., Aubry, M.: AtlasNet: a Papier-Mâché approach to learning 3D surface generation. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  23. Gupta, S., Hoffman, J., Malik, J.: Cross modal distillation for supervision transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2827–2836 (2016)

    Google Scholar 

  24. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006, vol. 2, pp. 1735–1742. IEEE (2006)

    Google Scholar 

  25. Hassani, K., Haley, M.: Unsupervised multi-task feature learning on point clouds. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 8160–8171 (2019)

    Google Scholar 

  26. Hoffman, D.D., Richards, W.: Parts of recognition. Cognition 18, 65–96 (1983)

    Article  Google Scholar 

  27. Huang, H., Kalogerakis, E., Chaudhuri, S., Ceylan, D., Kim, V.G., Yumer, E.: Learning local shape descriptors from part correspondences with multiview convolutional networks. ACM Trans. Graph. 37(1), 1–14 (2018)

    Google Scholar 

  28. Huang, J., Yagel, R., Filippov, V., Kurzion, Y.: An accurate method for voxelizing polygon meshes. In: IEEE Symposium on Volume Visualization (October 1998)

    Google Scholar 

  29. Jiang, H., Larsson, G., Maire, M., Shakhnarovich, G., Learned-Miller, E.: Self-supervised relative depth learning for urban scene understanding. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 20–37. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_2

    Chapter  Google Scholar 

  30. Kaick, O.V., Fish, N., Kleiman, Y., Asafi, S., Cohen-OR, D.: Shape segmentation by approximate convexity analysis. ACM Trans. Graph. 34(1), 1–11 (2014)

    Article  Google Scholar 

  31. Kalogerakis, E., Averkiou, M., Maji, S., Chaudhuri, S.: 3D shape segmentation with projective convolutional networks. In: Proceedings of the CVPR (2017)

    Google Scholar 

  32. Klokov, R., Lempitsky, V.: Escape from cells: deep Kd-networks for the recognition of 3D point cloud models. In: Proceedings of the ICCV (2017)

    Google Scholar 

  33. Kolesnikov, A., Zhai, X., Beyer, L.: Revisiting self-supervised visual representation learning. arXiv preprint arXiv:1901.09005 (2019)

  34. Kong, S., Fowlkes, C.C.: Recurrent pixel embedding for instance grouping. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9018–9028 (2018)

    Google Scholar 

  35. Larsson, G., Maire, M., Shakhnarovich, G.: Learning representations for automatic colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_35

    Chapter  Google Scholar 

  36. Li, J., Chen, B.M., Hee Lee, G.: SO-Net: self-organizing network for point cloud analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9397–9406 (2018)

    Google Scholar 

  37. Lien, J.M., Amato, N.M.: Approximate convex decomposition of polyhedra. In: Proceedings of the 2007 ACM Symposium on Solid and Physical Modeling, SPM 2007 (2007)

    Google Scholar 

  38. Luo, L., Baran, I., Rusinkiewicz, S., Matusik, W.: Chopper: Partitioning models into 3D-printable parts. ACM Trans. Graph. 31(6), 1–9 (2012)

    Google Scholar 

  39. Mamou, K.: Volumetric approximate convex decomposition, chap. 12. In: Lengyel, E. (ed.) Game Engine Gems, vol. 3, pp. 141–158. A K Peters/CRC Press (2016)

    Google Scholar 

  40. Maturana, D., Scherer, S.: 3D convolutional neural networks for landing zone detection from LiDAR. In: Proceedings of the ICRA (2015)

    Google Scholar 

  41. Müllner, D., et al.: fastcluster: fast hierarchical, agglomerative clustering routines for R and Python. J. Stat. Softw. 53(9), 1–18 (2013)

    Article  Google Scholar 

  42. Muralikrishnan, S., Kim, V.G., Chaudhuri, S.: Tags2parts: Discovering semantic regions from shape tags. CoRR abs/1708.06673 (2017)

    Google Scholar 

  43. Muralikrishnan, S., Kim, V.G., Chaudhuri, S.: Tags2Parts: discovering semantic regions from shape tags. In: Proceedings of the CVPR. IEEE (2018)

    Google Scholar 

  44. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_5

    Chapter  Google Scholar 

  45. Pathak, D., Girshick, R., Dollár, P., Darrell, T., Hariharan, B.: Learning features by watching objects move. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2701–2710 (2017)

    Google Scholar 

  46. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)

    Google Scholar 

  47. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the CVPR (2017)

    Google Scholar 

  48. Qi, C.R., Yi, L., Su, H., Guibas, L.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Proceedings of the NIPS (2017)

    Google Scholar 

  49. Riegler, G., Ulusoys, A.O., Geiger, A.: OctNet: learning deep 3D representations at high resolutions. In: Proceedings of the CVPR (2017)

    Google Scholar 

  50. Sánchez, J., Perronnin, F., Mensink, T., Verbeek, J.: Image classification with the fisher vector: theory and practice. Int. J. Comput. Vis. 105(3), 222–245 (2013)

    Article  MathSciNet  Google Scholar 

  51. Saxe, A.M., Koh, P.W., Chen, Z., Bhand, M., Suresh, B., Ng, A.Y.: On random weights and unsupervised feature learning. In: ICML, vol. 2, p. 6 (2011)

    Google Scholar 

  52. Sharma, A., Grau, O., Fritz, M.: VConv-DAE: deep volumetric shape learning without object labels. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 236–250. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_20

    Chapter  Google Scholar 

  53. Sharma, G., Kalogerakis, E., Maji, S.: Learning point embeddings from shape repositories for few-shot segmentation. In: 2019 International Conference on 3D Vision (3DV), pp. 67–75 (2019)

    Google Scholar 

  54. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  55. Su, H., et al.: SPLATNet: sparse lattice networks for point cloud processing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  56. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.G.: Multi-view convolutional neural networks for 3D shape recognition. In: Proceedings of the ICCV (2015)

    Google Scholar 

  57. Su, H., Qi, C., Mo, K., Guibas, L.: PointNet: deep Learning on point sets for 3D classification and segmentation. In: CVPR (2017)

    Google Scholar 

  58. Su, J.C., Gadelha, M., Wang, R., Maji, S.: A deeper look at 3D shape classifiers. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11131. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11015-4_49

    Chapter  Google Scholar 

  59. Su, J.C., Maji, S., Hariharan, B.: When does self-supervision improve few-shot learning? arXiv preprint arXiv:1910.03560 (2019)

  60. Tatarchenko, M., Park, J., Koltun, V., Zhou., Q.Y.: Tangent convolutions for dense prediction in 3D. In: CVPR (2018)

    Google Scholar 

  61. Thabet, A., Alwassel, H., Ghanem, B.: MortonNet: Self-Supervised Learning of Local Features in 3D Point Clouds. arXiv (March 2019). https://arxiv.org/abs/1904.00230

  62. Trimble Inc.: Trimble 3D Warehouse (2008). https://3dwarehouse.sketchup.com/

  63. Trinh, T.H., Luong, M.T., Le, Q.V.: Selfie: Self-supervised pretraining for image embedding. arXiv preprint arXiv:1906.02940 (2019)

  64. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J. Mach. Learn. Res. 11, 2837–2854 (2010)

    MathSciNet  MATH  Google Scholar 

  65. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  66. Wang, P.S., Liu, Y., Guo, Y.X., Sun, C.Y., Tong, X.: O-CNN: octree-based convolutional neural networks for 3D shape analysis. ACM Trans. Graph. 36(4), 1–11 (2017)

    Google Scholar 

  67. Wang, P.S., Sun, C.Y., Liu, Y., Tong, X.: Adaptive O-CNN: a patch-based deep representation of 3D shapes. ACM Trans. Graph. 37(6), 1–11 (2018)

    Google Scholar 

  68. Wang, X., Gupta, A.: Unsupervised learning of visual representations using videos. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2794–2802 (2015)

    Google Scholar 

  69. Wang, X., He, K., Gupta, A.: Transitive invariance for self-supervised visual representation learning. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1329–1338 (2017)

    Google Scholar 

  70. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. (TOG) 38(5), 1–12 (2019)

    Article  Google Scholar 

  71. Weller, R.: A brief overview of collision detection. In: Ferre, M., Ernst, M.O., Wing, A. (eds.) New Geometric Data Structures for Collision Detection and Haptics. Springer Series on Touch and Haptic Systems. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-319-01020-5_2

    Chapter  Google Scholar 

  72. Wu, J., Zhang, C., Xue, T., Freeman, B., Tenenbaum, J.: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. In: Advances in Neural Information Processing Systems, pp. 82–90 (2016)

    Google Scholar 

  73. Wu, Z., et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1912–1920 (2015)

    Google Scholar 

  74. Xie, Q., Hovy, E., Luong, M.T., Le, Q.V.: Self-training with noisy student improves imagenet classification. arXiv preprint arXiv:1911.04252 (2019)

  75. Yang, G., Huang, X., Hao, Z., Liu, M.Y., Belongie, S., Hariharan, B.: PointFlow: 3D point cloud generation with continuous normalizing flows. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4541–4550 (2019)

    Google Scholar 

  76. Yang, Y., Feng, C., Shen, Y., Tian, D.: FoldingNet: point cloud auto-encoder via deep grid deformation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 206–215 (2018)

    Google Scholar 

  77. Yi, L., Guibas, L., Hertzmann, A., Kim, V.G., Su, H., Yumer, E.: Learning hierarchical shape segmentation and labeling from online repositories. ACM Trans. Graph. 36, 1–12 (2017)

    Article  Google Scholar 

  78. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40

    Chapter  Google Scholar 

  79. Zhang, R., Isola, P., Efros, A.A.: Split-brain autoencoders: unsupervised learning by cross-channel prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1058–1067 (2017)

    Google Scholar 

  80. Zhao, Y., Birdal, T., Deng, H., Tombari, F.: 3D point capsule networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1009–1018 (2019)

    Google Scholar 

  81. Zhou, Y., Yin, K., Huang, H., Zhang, H., Gong, M., Cohen-Or, D.: Generalized cylinder decomposition. ACM Trans. Graph. 34, 6 (2015)

    Article  Google Scholar 

  82. Ren, Z., Yuan, J., Li, C., Liu, W.: Minimum near-convex decomposition for robust shape representation. In: 2011 International Conference on Computer Vision (November 2011)

    Google Scholar 

  83. Zhu, C., Xu, K., Chaudhuri, S., Yi, L., Guibas, L.J., Zhang, H.: AdaCoSeg: Adaptive shape co-segmentation with group consistency loss. CoRR abs/1903.10297 (2019). http://arxiv.org/abs/1903.10297

Download references

Acknowledgements

The project is supported in part by the National Science Foundation (NSF) through grants #1908669, #1749833, #1617333. Our experiments used the UMass GPU cluster obtained under the Collaborative Fund managed by the Massachusetts Technology Collaborative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matheus Gadelha .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3738 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gadelha, M. et al. (2020). Label-Efficient Learning on Point Clouds Using Approximate Convex Decompositions. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12355. Springer, Cham. https://doi.org/10.1007/978-3-030-58607-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58607-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58606-5

  • Online ISBN: 978-3-030-58607-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics