Advertisement

SCAN: Learning to Classify Images Without Labels

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12355)

Abstract

Can we automatically group images into semantically meaningful clusters when ground-truth annotations are absent? The task of unsupervised image classification remains an important, and open challenge in computer vision. Several recent approaches have tried to tackle this problem in an end-to-end fashion. In this paper, we deviate from recent works, and advocate a two-step approach where feature learning and clustering are decoupled. First, a self-supervised task from representation learning is employed to obtain semantically meaningful features. Second, we use the obtained features as a prior in a learnable clustering approach. In doing so, we remove the ability for cluster learning to depend on low-level features, which is present in current end-to-end learning approaches. Experimental evaluation shows that we outperform state-of-the-art methods by large margins, in particular \(+26.6\%\) on CIFAR10, \(+25.0\%\) on CIFAR100-20 and \(+21.3\%\) on STL10 in terms of classification accuracy. Furthermore, our method is the first to perform well on a large-scale dataset for image classification. In particular, we obtain promising results on ImageNet, and outperform several semi-supervised learning methods in the low-data regime without the use of any ground-truth annotations. The code is available at www.github.com/wvangansbeke/Unsupervised-Classification.git.

Keywords

Unsupervised learning Self-supervised learning Image classification Clustering 

Notes

Acknowledgment

The authors thankfully acknowledge support by Toyota via the TRACE project and MACCHINA (KU Leuven, C14/18/065). Finally, we thank Xu Ji and Kevis-Kokitsi Maninis for their feedback.

Supplementary material

504449_1_En_16_MOESM1_ESM.pdf (6.5 mb)
Supplementary material 1 (pdf 6609 KB)

References

  1. 1.
    Asano, Y.M., Rupprecht, C., Vedaldi, A.: Self-labelling via simultaneous clustering and representation learning. In: ICLR (2020)Google Scholar
  2. 2.
    Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: NIPS (2007)Google Scholar
  3. 3.
    Bojanowski, P., Joulin, A.: Unsupervised learning by predicting noise. In: ICML (2017)Google Scholar
  4. 4.
    Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 139–156. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01264-9_9CrossRefGoogle Scholar
  5. 5.
    Caron, M., Bojanowski, P., Mairal, J., Joulin, A.: Unsupervised pre-training of image features on non-curated data. In: ICCV (2019)Google Scholar
  6. 6.
    Chang, J., Wang, L., Meng, G., Xiang, S., Pan, C.: Deep adaptive image clustering. In: ICCV (2017)Google Scholar
  7. 7.
    Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. arXiv preprint arXiv:2002.05709 (2020)
  8. 8.
    Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)
  9. 9.
    Coates, A., Ng, A., Lee, H.: An analysis of single-layer networks in unsupervised feature learning. In: JMLR (2011)Google Scholar
  10. 10.
    Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: practical automated data augmentation with a reduced search space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 702–703 (2020)Google Scholar
  11. 11.
    Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)Google Scholar
  12. 12.
    Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: ICCV (2015)Google Scholar
  13. 13.
    Donahue, J., Krähenbühl, P., Darrell, T.: Adversarial feature learning. In: ICLR (2017)Google Scholar
  14. 14.
    Donahue, J., Simonyan, K.: Large scale adversarial representation learning. In: NIPS (2019)Google Scholar
  15. 15.
    Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. In: ICLR (2018)Google Scholar
  16. 16.
    Haeusser, P., Plapp, J., Golkov, V., Aljalbout, E., Cremers, D.: Associative deep clustering: training a classification network with no labels. In: Brox, T., Bruhn, A., Fritz, M. (eds.) GCPR 2018. LNCS, vol. 11269, pp. 18–32. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-12939-2_2CrossRefGoogle Scholar
  17. 17.
    He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: arXiv preprint arXiv:1911.05722 (2020)
  18. 18.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)Google Scholar
  19. 19.
    Hénaff, O.J., Razavi, A., Doersch, C., Eslami, S., van den Oord, A.: Data-efficient image recognition with contrastive predictive coding. arXiv preprint arXiv:1905.09272 (2019)
  20. 20.
    Hu, W., Miyato, T., Tokui, S., Matsumoto, E., Sugiyama, M.: Learning discrete representations via information maximizing self-augmented training. In: ICML (2017)Google Scholar
  21. 21.
    Huang, J., Dong, Q., Gong, S., Zhu, X.: Unsupervised deep learning by neighbourhood discovery. In: ICML (2019)Google Scholar
  22. 22.
    Jenni, S., Favaro, P.: Self-supervised feature learning by learning to spot artifacts. In: CVPR (2018)Google Scholar
  23. 23.
    Ji, X., Henriques, J.F., Vedaldi, A.: Invariant information clustering for unsupervised image classification and segmentation. In: ICCV (2019)Google Scholar
  24. 24.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
  25. 25.
    Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)
  26. 26.
    Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)Google Scholar
  27. 27.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS (2012)Google Scholar
  28. 28.
    Larsson, G., Maire, M., Shakhnarovich, G.: Colorization as a proxy task for visual understanding. In: CVPR (2017)Google Scholar
  29. 29.
    Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10602-1_48CrossRefGoogle Scholar
  30. 30.
    McLachlan, G.J.: Iterative reclassification procedure for constructing an asymptotically optimal rule of allocation in discriminant analysis. J. Am. Stat. Assoc. 70, 365–369 (1975)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Misra, I., van der Maaten, L.: Self-supervised learning of pretext-invariant representations. In: CVPR (2020)Google Scholar
  32. 32.
    Nathan Mundhenk, T., Ho, D., Chen, B.Y.: Improvements to context based self-supervised learning. In: CVPR (2018)Google Scholar
  33. 33.
    Ng, A.: Sparse autoencoder. CS294A Lecture notes (2011)Google Scholar
  34. 34.
    Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving Jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46466-4_5CrossRefGoogle Scholar
  35. 35.
    Noroozi, M., Pirsiavash, H., Favaro, P.: Representation learning by learning to count. In: ICCV (2017)Google Scholar
  36. 36.
    Noroozi, M., Vinjimoor, A., Favaro, P., Pirsiavash, H.: Boosting self-supervised learning via knowledge transfer. In: CVPR (2018)Google Scholar
  37. 37.
    van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)
  38. 38.
    Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: CVPR (2016)Google Scholar
  39. 39.
    Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)
  40. 40.
    Ren, Z., Jae Lee, Y.: Cross-domain self-supervised multi-task feature learning using synthetic imagery. In: CVPR (2018)Google Scholar
  41. 41.
    Schultz, M., Joachims, T.: Learning a distance metric from relative comparisons. In: NIPS (2004)Google Scholar
  42. 42.
    Scudder, H.: Probability of error of some adaptive pattern-recognition machines. IEEE Trans. Inf. Theory 11, 363–371 (1965)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)Google Scholar
  44. 44.
    Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: NIPS (2017)Google Scholar
  45. 45.
    Sohn, K., et al.: FixMatch: simplifying semi-supervised learning with consistency and confidence. arXiv preprint arXiv:2001.07685 (2020)
  46. 46.
    Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR (2016)Google Scholar
  47. 47.
    Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding. arXiv preprint arXiv:1906.05849 (2019)
  48. 48.
    Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. JMLR 11, 3371–3408 (2010)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Wang, J., Wang, J., Song, J., Xu, X.S., Shen, H.T., Li, S.: Optimized Cartesian k-means. IEEE Trans. Knowl. Data Eng. 27, 180–192 (2015)CrossRefGoogle Scholar
  50. 50.
    Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: CVPR (2018)Google Scholar
  51. 51.
    Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: ICML (2016)Google Scholar
  52. 52.
    Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: CVPR (2017)Google Scholar
  53. 53.
    Yang, J., Parikh, D., Batra, D.: Joint unsupervised learning of deep representations and image clusters. In: CVPR (2016)Google Scholar
  54. 54.
    Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: NIPS (2005)Google Scholar
  55. 55.
    Zhai, X., Oliver, A., Kolesnikov, A., Beyer, L.: S4l: self-supervised semi-supervised learning. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1476–1485 (2019)Google Scholar
  56. 56.
    Zhang, L., Qi, G.J., Wang, L., Luo, J.: AET vs. AED: unsupervised representation learning by auto-encoding transformations rather than data. In: CVPR (2019)Google Scholar
  57. 57.
    Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46487-9_40CrossRefGoogle Scholar
  58. 58.
    Zhao, J., Mathieu, M., Goroshin, R., Lecun, Y.: Stacked what-where auto-encoders. arXiv preprint arXiv:1506.02351 (2015)

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.KU Leuven/ESAT-PSILeuvenBelgium
  2. 2.ETH Zurich/CVL, TRACEZürichSwitzerland

Personalised recommendations