Skip to main content

Improving Optical Flow on a Pyramid Level

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

In this work we review the coarse-to-fine spatial feature pyramid concept, which is used in state-of-the-art optical flow estimation networks to make exploration of the pixel flow search space computationally tractable and efficient. Within an individual pyramid level, we improve the cost volume construction process by departing from a warping- to a sampling-based strategy, which avoids ghosting and hence enables us to better preserve fine flow details. We further amplify the positive effects through a level-specific, loss max-pooling strategy that adaptively shifts the focus of the learning process on under-performing predictions. Our second contribution revises the gradient flow across pyramid levels. The typical operations performed at each pyramid level can lead to noisy, or even contradicting gradients across levels. We show and discuss how properly blocking some of these gradient components leads to improved convergence and ultimately better performance. Finally, we introduce a distillation concept to counteract the issue of catastrophic forgetting during finetuning and thus preserving knowledge over models sequentially trained on multiple datasets. Our findings are conceptually simple and easy to implement, yet result in compelling improvements on relevant error measures that we demonstrate via exhaustive ablations on datasets like Flying Chairs2, Flying Things, Sintel and KITTI. We establish new state-of-the-art results on the challenging Sintel and KITTI 2012 test datasets, and even show the portability of our findings to different optical flow and depth from stereo approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vis. 92(1), 1–31 (2011). https://doi.org/10.1007/s11263-010-0390-2

  2. Bar-Haim, A., Wolf, L.: ScopeFlow: dynamic scene scoping for optical flow. In: CVPR, June 2020

    Google Scholar 

  3. Bouguet, J.Y.: Pyramidal implementation of the Lucas Kanade feature tracker. Intel Corporation Microprocess. Res. Labs 5(1–10), 4 (2000)

    Google Scholar 

  4. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: ECCV (2004)

    Google Scholar 

  5. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon, A., et al. (eds.) European Conference on Computer Vision (ECCV), pp. 611–625. Part IV. LNCS 7577. Springer-Verlag, October 2012, The MPI Sintel Flow Dataset presented in this work uses a modified version of the Sintel movie copyright Blender Foundation, www.sintel.org

  6. Chaudhury, K., Mehrotra, R.: A trajectory-based computational model for optical flow estimation. IEEE Trans. Robot. Autom. 11(5), 733–741 (1995). https://doi.org/10.1109/70.466611

    Article  Google Scholar 

  7. Dollár, P., Zitnick, C.L.: Structured forests for fast edge detection. In: (ICCV) (2013)

    Google Scholar 

  8. Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks. In: IEEE International Conference on Computer Vision (ICCV) (2015). http://lmb.informatik.uni-freiburg.de/Publications/2015/DFIB15

  9. Fortun, D., Bouthemy, P., Kervrann, C.: Optical flow modeling and computation. Comput. Vis. Image Underst. 134(C), 1–21, May 2015. https://doi.org/10.1016/j.cviu.2015.02.008

  10. Garg, R., Roussos, A., Agapito, L.: A variational approach to video registration with subspace constraints. Int. J. Comput. Vis. 104(3), 286–314, September 2013. https://doi.org/10.1007/s11263-012-0607-7

  11. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. IJRR 32(11), 1231–1237 (2013)

    Google Scholar 

  12. Hinton, G.E., Vinyals, S., Dean, J.: Distilling the knowledge in a neural network. In: Deep Learning Workshop, NIPS (2014)

    Google Scholar 

  13. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)

    Article  Google Scholar 

  14. Hui, T.W., Tang, X., Loy, C.C.: A lightweight optical flow CNN - revisiting data fidelity and regularization. arXiv preprint arXiv:1903.07414 (2019). http://mmlab.ie.cuhk.edu.hk/projects/LiteFlowNet/

  15. Hur, J., Roth, S.: Iterative residual refinement for joint optical flow and occlusion estimation. In: CVPR (2019)

    Google Scholar 

  16. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet 2.0: evolution of optical flow estimation with deep networks. In: CVPR (2017). http://lmb.informatik.uni-freiburg.de/Publications/2017/IMSKDB17

  17. Ilg, E., Saikia, T., Keuper, M., Brox, T.: Occlusions, motion and depth boundaries with a generic network for disparity, optical flow or scene flow estimation. In: ECCV (2018)

    Google Scholar 

  18. Jiang, H., Sun, D., Jampani, V., Lv, Z., Learned-Miller, E., Kautz, J.: SENSE: a shared encoder network for scene-flow estimation. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  19. Jiang, W., Sun, W., Tagliasacchi, A., Trulls, E., Yi, K.M.: Linearized multi-sampling for differentiable image transformation. In: ICCV, pp. 2988–2997 (2019)

    Google Scholar 

  20. Liu, P., King, I., Lyu, M.R., Xu, S.J.: DDFlow: learning optical flow with unlabeled data distillation. CoRR abs/1902.09145 (2019)

    Google Scholar 

  21. Liu, P., Lyu, M.R., King, I., Xu, J.: SelFlow: self-supervised learning of optical flow. In: CVPR (2019)

    Google Scholar 

  22. Lu, Y., Valmadre, J., Wang, H., Kannala, J., Harandi, M., Torr, P.: Devon: deformable volume network for learning optical flow. In: The IEEE Winter Conference on Applications of Computer Vision (WACV), March 2020

    Google Scholar 

  23. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of Imaging Understanding Workshop, pp. 4884–4893 (1981). http://cseweb.ucsd.edu/classes/sp02/cse252/lucaskanade81.pdf

  24. Mac Aodha, O., Humayun, A., Pollefeys, M., Brostow, G.J.: Learning a confidence measure for optical flow. IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1107–1120 (2013). https://doi.org/10.1109/TPAMI.2012.171

    Article  Google Scholar 

  25. Menze, M., Heipke, C., Geiger, A.: Joint 3D estimation of vehicles and scene flow. In: ISPRS Workshop on Image Sequence Analysis (ISA) (2015)

    Google Scholar 

  26. Menze, M., Heipke, C., Geiger, A.: Object scene flow. ISPRS J. Photogrammetry Remote Sens. (JPRS) 140, 60–76 (2018)

    Article  Google Scholar 

  27. Ranjan, A., Black, M.J.: Optical flow estimation using a spatial pyramid network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2720–2729, July 2017. https://doi.org/10.1109/CVPR.2017.291

  28. Ren, Z., Gallo, O., Sun, D., Yang, M.H., Sudderth, E.B., Kautz, J.: A fusion approach for multi-frame optical flow estimation. In: IEEE Winter Conference on Applications of Computer Vision (2019)

    Google Scholar 

  29. Revaud, J., Weinzaepfel, P., Harchaoui, Z., Schmid, C.: Epicflow: Edge-preserving interpolation of correspondences for optical flow. CoRR (2015)

    Google Scholar 

  30. Rota Bulò, S., Neuhold, G., Kontschieder, P.: Loss max-pooling for semantic image segmentation. In: CVPR, July 2017

    Google Scholar 

  31. Bulò, S.R., Porzi, L., Kontschieder, P.: Dropout distillation. In: Proceedings of The 33rd International Conference on Machine Learning, Proceedings of Machine Learning Research. PMLR, 20–22 June 2016, New York, USA , vol. 48, pp. 99–107 (2016)

    Google Scholar 

  32. Rota Bulò, S., Porzi, L., Kontschieder, P.: In-place activated batchnorm for memory-optimized training of DNNs. In: (CVPR) (2018)

    Google Scholar 

  33. Santurkar, S., Tsipras, D., Ilyas, A., Mądry, A.: How does batch normalization help optimization? In: Proceedings of the 32nd International Conference on Neural Information Processing Systems. (NIPS 2018), pp. 2488–2498. Curran Associates Inc., Red Hook (2018)

    Google Scholar 

  34. Sun, D., Roth, S., Black, M.J.: Secrets of optical flow estimation and their principles. In: CVPR, pp. 2432–2439 (2010)

    Google Scholar 

  35. Sun, D., Roth, S., Black, M.J.: A quantitative analysis of current practices in optical flow estimation and the principles behind them. Int. J. Comput. Vis. 106(2), 115–137 (2014). https://doi.org/10.1007/s11263-013-0644-x

    Article  Google Scholar 

  36. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In: CVPR (2018)

    Google Scholar 

  37. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: Models matter, so does training: an empirical study of CNNs for optical flow estimation. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 42(6), 1408–1423 (2020). https://doi.org/10.1109/TPAMI.2019.2894353 (to appear)

  38. Wang, C., Chen, X., Smola, A.J., Xing, E.P.: Variance reduction for stochastic gradient optimization. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 26, pp. 181–189. Curran Associates, Inc. (2013). http://papers.nips.cc/paper/5034-variance-reduction-for-stochastic-gradient-optimization.pdf

  39. Wang, Y., Yang, Y., Yang, Z., Zhao, L., Wang, P., Xu, W.: Occlusion aware unsupervised learning of optical flow. In: CVPR, pp. 4884–4893 (2018). https://doi.org/10.1109/CVPR.2018.00513

  40. Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C.: DeepFlow: large displacement optical flow with deep matching. In: IEEE Intenational Conference on Computer Vision (ICCV), Sydney, Australia, December 2013. http://hal.inria.fr/hal-00873592

  41. Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., Bischof, H.: Anisotropic Huber-L1 optical flow. In: Proceedings of the British Machine Vision Conference (BMVC), London, UK, September 2009 (to appear)

    Google Scholar 

  42. Yamaguchi, K., McAllester, D., Urtasun, R.: Efficient joint segmentation, occlusion labeling, stereo and flow estimation. In: ECCV (2014)

    Google Scholar 

  43. Yang, G., Ramanan, D.: Volumetric correspondence networks for optical flow. In: Advances in Neural Information Processing Systems 32, pp. 793–803. Curran Associates, Inc. (2019). http://papers.nips.cc/paper/8367-volumetric-correspondence-networks-for-optical-flow.pdf

  44. Yin, Z., Darrell, T., Yu, F.: Hierarchical discrete distribution decomposition for match density estimation. In: CVPR (2019)

    Google Scholar 

  45. Yu, J.J., Harley, A.W., Derpanis, K.G.: Back to basics: unsupervised learning of optical flow via brightness constancy and motion smoothness. In: Computer Vision - ECCV 2016 Workshops, Part 3 (2016)

    Google Scholar 

Download references

Acknowledgements

T. Pock and M. Hofinger acknowledge that this work was supported by the ERC starting grant HOMOVIS (No. 640156).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Hofinger .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (mp4 67661 KB)

Supplementary material 1 (pdf 7102 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hofinger, M., Bulò, S.R., Porzi, L., Knapitsch, A., Pock, T., Kontschieder, P. (2020). Improving Optical Flow on a Pyramid Level. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12373. Springer, Cham. https://doi.org/10.1007/978-3-030-58604-1_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58604-1_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58603-4

  • Online ISBN: 978-3-030-58604-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics