Skip to main content

Segmenting Transparent Objects in the Wild

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12358))

Included in the following conference series:

Abstract

Transparent objects such as windows and bottles made by glass widely exist in the real world. Segmenting transparent objects is challenging because these objects have diverse appearance inherited from the image background, making them had similar appearance with their surroundings. Besides the technical difficulty of this task, only a few previous datasets were specially designed and collected to explore this task and most of the existing datasets have major drawbacks. They either possess limited sample size such as merely a thousand of images without manual annotations, or they generate all images by using computer graphics method (i.e. not real image). To address this important problem, this work proposes a large-scale dataset for transparent object segmentation, named Trans10 K, consisting of 10,428 images of real scenarios with carefully manual annotations, which are 10 times larger than the existing datasets. The transparent objects in Trans10 K are extremely challenging due to high diversity in scale, viewpoint and occlusion. To evaluate the effectiveness of Trans10 K, we propose a novel boundary-aware segmentation method, termed TransLab, which exploits boundary as the clue to improve segmentation of transparent objects. Extensive experiments and ablation studies demonstrate the effectiveness of Trans10 K and validate the practicality of learning object boundary in TransLab. For example, TransLab significantly outperforms 20 recent object segmentation methods based on deep learning, showing that this task is largely unsolved. We believe that both Trans10 K and TransLab have important contributions to both the academia and industry, facilitating future researches and applications. The codes and models will be released at: https://github.com/xieenze/Segment_Transparent_Objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu, Y., Nagahara, H., Shimada, A., Taniguchi, R.: Transcut: transparent object segmentation from a light-field image. In: ICCV (2015)

    Google Scholar 

  2. Chen, G., Han, K., Wong, K.K.: Tom-net: learning transparent object matting from a single image. In: CVPR (2018)

    Google Scholar 

  3. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR (2017)

    Google Scholar 

  4. Zhao, H., Qi, X., Shen, X., Shi, J., Jia, J.: ICNET for real-time semantic segmentation on high-resolution images. In: ECCV (2018)

    Google Scholar 

  5. Jin, Q., Meng, Z., Pham, T.D., Chen, Q., Wei, L., Su, R.: Dunet: a deformable network for retinal vessel segmentation. Knowl. Based Syst. 178, 149–162 (2019)

    Article  Google Scholar 

  6. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS. TPAMI (2017)

    Google Scholar 

  7. Yang, M., Yu, K., Zhang, C., Li, Z., Yang, K.: Denseaspp for semantic segmentation in street scenes. In: CVPR (2018)

    Google Scholar 

  8. Lin, G., Milan, A., Shen, C., Reid, I.: Refinenet: multi-path refinement networks for high-resolution semantic segmentation. In: CVPR (2017)

    Google Scholar 

  9. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)

    Google Scholar 

  10. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: ECCV (2018)

    Google Scholar 

  11. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFS. arXiv (2014)

    Google Scholar 

  12. Lin, G., Shen, C., Van Den Hengel, A., Reid, I.: Efficient piecewise training of deep structured models for semantic segmentation. In: CVPR (2016)

    Google Scholar 

  13. Zheng, S., et al.: Conditional random fields as recurrent neural networks. In: ICCV (2015)

    Google Scholar 

  14. Chen, L.C., Barron, J.T., Papandreou, G., Murphy, K., Yuille, A.L.: Semantic image segmentation with task-specific edge detection using CNNS and a discriminatively trained domain transform. In: CVPR (2016)

    Google Scholar 

  15. Gadde, R., Jampani, V., Kiefel, M., Kappler, D., Gehler, P.V.: Superpixel convolutional networks using bilateral inceptions. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_36

    Chapter  Google Scholar 

  16. Liu, S., De Mello, S., Gu, J., Zhong, G., Yang, M.H., Kautz, J.: Learning affinity via spatial propagation networks. In: NIPS (2017)

    Google Scholar 

  17. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR (2018)

    Google Scholar 

  18. Kuznetsova, A., et al.: The open images dataset v4: unified image classification, object detection, and visual relationship detection at scale. arXiv (2018)

    Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  20. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: IC3DV (2016)

    Google Scholar 

  21. Paszke, A., et al.: Automatic differentiation in pytorch (2017)

    Google Scholar 

  22. Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: Bisenet: bilateral segmentation network for real-time semantic segmentation. In: ECCV (2018)

    Google Scholar 

  23. Liu, M., Yin, H.: Feature pyramid encoding network for real-time semantic segmentation. arXiv (2019)

    Google Scholar 

  24. Poudel, R.P., Bonde, U., Liwicki, S., Zach, C.: Contextnet: exploring context and detail for semantic segmentation in real-time. arXiv (2018)

    Google Scholar 

  25. Poudel, R.P., Liwicki, S., Cipolla, R.: Fast-SCNN: fast semantic segmentation network. arXiv (2019)

    Google Scholar 

  26. Wu, T., Tang, S., Zhang, R., Zhang, Y.: CGNET: a light-weight context guided network for semantic segmentation. arXiv (2018)

    Google Scholar 

  27. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. arXiv (2019)

    Google Scholar 

  28. Chao, P., Kao, C.Y., Ruan, Y.S., Huang, C.H., Lin, Y.L.: Hardnet: a low memory traffic network. In: ICCV (2019)

    Google Scholar 

  29. Li, G., Yun, I., Kim, J., Kim, J.: Dabnet: depth-wise asymmetric bottleneck for real-time semantic segmentation. arXiv (2019)

    Google Scholar 

  30. Wang, Y., et al.: Lednet: a lightweight encoder-decoder network for real-time semantic segmentation. In: ICIP (2019)

    Google Scholar 

  31. Yuan, Y., Wang, J.: OCNet: object context network for scene parsing. arXiv (2018)

    Google Scholar 

  32. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: MICCAI (2015)

    Google Scholar 

Download references

Acknowledgement

This work is partially supported by the SenseTime Donation for Research, HKU Seed Fund for Basic Research, Startup Fund and General Research Fund No.27208720.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enze Xie .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 7478 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, E., Wang, W., Wang, W., Ding, M., Shen, C., Luo, P. (2020). Segmenting Transparent Objects in the Wild. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12358. Springer, Cham. https://doi.org/10.1007/978-3-030-58601-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58601-0_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58600-3

  • Online ISBN: 978-3-030-58601-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics