Skip to main content

Learning Object Placement by Inpainting for Compositional Data Augmentation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12358))

Abstract

We study the problem of common sense placement of visual objects in an image. This involves multiple aspects of visual recognition: the instance segmentation of the scene, 3D layout, and common knowledge of how objects are placed and where objects are moving in the 3D scene. This seemingly simple task is difficult for current learning-based approaches because of the lack of labeled training pair of foreground objects paired with cleaned background scenes. We propose a self-learning framework that automatically generates the necessary training data without any manual labeling by detecting, cutting, and inpainting objects from an image. We propose a PlaceNet that predicts a diverse distribution of common sense locations when given a foreground object and a background scene. We show one practical use of our object placement network for augmenting training datasets by recomposition of object-scene with a key property of contextual relationship preservation. We demonstrate improvement of object detection and instance segmentation performance on both Cityscape [4] and KITTI [9] datasets. We also show that the learned representation of our PlaceNet displays strong discriminative power in image retrieval and classification.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Azadi, S., Pathak, D., Ebrahimi, S., Darrell, T.: Compositional gan: Learning image-conditional binary composition. arXiv preprint arXiv:1807.07560 (2019)

  2. Bau, D., et al.: Seeing what a gan cannot generate. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 4502–4511 (2019)

    Google Scholar 

  3. Carr, M.F., Jadhav, S.P., Frank, L.M.: Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nat. Neurosci. 14(2), 147 (2011)

    Article  Google Scholar 

  4. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3213–3223 (2016)

    Google Scholar 

  5. Dvornik, N., Mairal, J., Schmid, C.: Modeling visual context is key to augmenting object detection datasets. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 364–380 (2018)

    Google Scholar 

  6. Dwibedi, D., Misra, I., Hebert, M.: Cut, paste and learn: Surprisingly easy synthesis for instance detection. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 1301–1310 (2017)

    Google Scholar 

  7. Fang, H.S., Sun, J., Wang, R., Gou, M., Li, Y.L., Lu, C.: Instaboost: boosting instance segmentation via probability map guided copy-pasting. arXiv preprint arXiv:1908.07801 (2019)

  8. Fu, C.Y., Liu, W., Ranga, A., Tyagi, A., Berg, A.C.: Dssd: deconvolutional single shot detector. arXiv preprint arXiv:1701.06659 (2017)

  9. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the kitti dataset. In: International Journal of Robotics Research (IJRR) (2013)

    Google Scholar 

  10. Georgakis, G., Mousavian, A., Berg, A.C., Kosecka, J.: Synthesizing training data for object detection in indoor scenes. arXiv preprint arXiv:1702.07836 (2017)

  11. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2961–2969 (2017)

    Google Scholar 

  12. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems. pp. 6626–6637 (2017)

    Google Scholar 

  13. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in Neural Information Processing Systems. pp. 2017–2025 (2015)

    Google Scholar 

  14. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  15. Larsen, A.B.L., Sønderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond pixels using a learned similarity metric. arXiv preprint arXiv:1512.09300 (2015)

  16. Lee, D., Liu, S., Gu, J., Liu, M.Y., Yang, M.H., Kautz, J.: Context-aware synthesis and placement of object instances. In: Advances in Neural Information Processing Systems. pp. 10393–10403 (2018)

    Google Scholar 

  17. Li, X., Liu, S., Kim, K., Wang, X., Yang, M.H., Kautz, J.: Putting humans in a scene: Learning affordance in 3d indoor environments. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 12368–12376 (2019)

    Google Scholar 

  18. Lin, C.H., Yumer, E., Wang, O., Shechtman, E., Lucey, S.: St-gan: Spatial transformer generative adversarial networks for image compositing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 9455–9464 (2018)

    Google Scholar 

  19. Liu, S., Zhang, X., Wangni, J., Shi, J.: Normalized diversification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 10306–10315 (2019)

    Google Scholar 

  20. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  21. Mao, Q., Lee, H.Y., Tseng, H.Y., Ma, S., Yang, M.H.: Mode seeking generative adversarial networks for diverse image synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1429–1437 (2019)

    Google Scholar 

  22. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  23. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. arXiv preprint arXiv:1802.05957 (2018)

  24. Oliva, A., Torralba, A.: The role of context in object recognition. Trends Cogn. Sci. 11(12), 520–527 (2007)

    Article  Google Scholar 

  25. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  26. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems. pp. 91–99 (2015)

    Google Scholar 

  27. Tan, F., Bernier, C., Cohen, B., Ordonez, V., Barnes, C.: Where and who? automatic semantic-aware person composition. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). pp. 1519–1528. IEEE (2018)

    Google Scholar 

  28. Torralba, A., Murphy, K.P., Freeman, W.T., Rubin, M.A.: Context-based vision system for place and object recognition (2003)

    Google Scholar 

  29. Tripathi, S., Chandra, S., Agrawal, A., Tyagi, A., Rehg, J.M., Chari, V.: Learning to generate synthetic data via compositing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 461–470 (2019)

    Google Scholar 

  30. Wang, H., Wang, Q., Yang, F., Zhang, W., Zuo, W.: Data augmentation for object detection via progressive and selective instance-switching (2019)

    Google Scholar 

  31. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 5505–5514 (2018)

    Google Scholar 

  32. Zhu, J.Y., et al.: Toward multimodal image-to-image translation. In: Advances in Neural Information Processing Systems. pp. 465–476 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingzhi Zhang , Tarmily Wen , Jie Min , Jiancong Wang , David Han or Jianbo Shi .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 110 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, L., Wen, T., Min, J., Wang, J., Han, D., Shi, J. (2020). Learning Object Placement by Inpainting for Compositional Data Augmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12358. Springer, Cham. https://doi.org/10.1007/978-3-030-58601-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58601-0_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58600-3

  • Online ISBN: 978-3-030-58601-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics