Skip to main content

Rethinking Pseudo-LiDAR Representation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12358))

Included in the following conference series:

Abstract

The recently proposed pseudo-LiDAR based 3D detectors greatly improve the benchmark of monocular/stereo 3D detection task. However, the underlying mechanism remains obscure to the research community. In this paper, we perform an in-depth investigation and observe that the efficacy of pseudo-LiDAR representation comes from the coordinate transformation, instead of data representation itself. Based on this observation, we design an image based CNN detector named PatchNet, which is more generalized and can be instantiated as pseudo-LiDAR based 3D detectors. Moreover, the pseudo-LiDAR data in our PatchNet is organized as the image representation, which means existing 2D CNN designs can be easily utilized for extracting deep features from input data and boosting 3D detection performance. We conduct extensive experiments on the challenging KITTI dataset, where the proposed PatchNet outperforms all existing pseudo-LiDAR based counterparts. Code has been made available at: https://github.com/xinzhuma/patchnet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/charlesq34/pointnet.

References

  1. Alhashim, I., Wonka, P.: High quality monocular depth estimation via transfer learning. arXiv e-prints abs/1812.11941 (2018)

  2. Brazil, G., Liu, X.: M3D-RPN: monocular 3D region proposal network for object detection. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  3. Cai, Y., Li, B., Jiao, Z., Li, H., Zeng, X., Wang, X.: Monocular 3D object detection with decoupled structured polygon estimation and height-guided depth estimation. arXiv preprint arXiv:2002.01619 (2020)

  4. Chabot, F., Chaouch, M., Rabarisoa, J., Teuliere, C., Chateau, T.: Deep MANTA: a coarse-to-fine many-task network for joint 2D and 3D vehicle analysis from monocular image. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2040–2049 (2017)

    Google Scholar 

  5. Chang, J.R., Chen, Y.S.: Pyramid stereo matching network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5410–5418 (2018)

    Google Scholar 

  6. Chen, X., Kundu, K., Zhang, Z., Ma, H., Fidler, S., Urtasun, R.: Monocular 3D object detection for autonomous driving. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2147–2156 (2016)

    Google Scholar 

  7. Chen, X., et al.: 3D object proposals for accurate object class detection. In: Advances in Neural Information Processing Systems, pp. 424–432 (2015)

    Google Scholar 

  8. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3D object detection network for autonomous driving. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017

    Google Scholar 

  9. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, pp. 379–387 (2016)

    Google Scholar 

  10. Fu, H., Gong, M., Wang, C., Batmanghelich, K., Tao, D.: Deep ordinal regression network for monocular depth estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2002–2011 (2018)

    Google Scholar 

  11. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361. IEEE (2012)

    Google Scholar 

  12. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  13. Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 270–279 (2017)

    Google Scholar 

  14. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  16. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  17. Jörgensen, E., Zach, C., Kahl, F.: Monocular 3D object detection and box fitting trained end-to-end using intersection-over-union loss. CoRR abs/1906.08070 (2019). http://arxiv.org/abs/1906.08070

  18. Ku, J., Mozifian, M., Lee, J., Harakeh, A., Waslander, S.L.: Joint 3D proposal generation and object detection from view aggregation. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1–8. IEEE (2018)

    Google Scholar 

  19. Li, B., Ouyang, W., Sheng, L., Zeng, X., Wang, X.: GS3D: an efficient 3D object detection framework for autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1019–1028 (2019)

    Google Scholar 

  20. Li, P., Chen, X., Shen, S.: Stereo R-CNN based 3D object detection for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  21. Lin, T.Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017

    Google Scholar 

  22. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  23. Liu, L., Lu, J., Xu, C., Tian, Q., Zhou, J.: Deep fitting degree scoring network for monocular 3D object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1057–1066 (2019)

    Google Scholar 

  24. Ma, X., Wang, Z., Li, H., Zhang, P., Ouyang, W., Fan, X.: Accurate monocular 3D object detection via color-embedded 3D reconstruction for autonomous driving. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  25. Manhardt, F., Kehl, W., Gaidon, A.: ROI-10D: monocular lifting of 2D detection to 6D pose and metric shape. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  26. Mousavian, A., Anguelov, D., Flynn, J., Kosecka, J.: 3D bounding box estimation using deep learning and geometry. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7074–7082 (2017)

    Google Scholar 

  27. Naiden, A., Paunescu, V., Kim, G., Jeon, B., Leordeanu, M.: Shift R-CNN: deep monocular 3D object detection with closed-form geometric constraints. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 61–65. IEEE (2019)

    Google Scholar 

  28. Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum PointNets for 3D object detection from RGB-D data. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  29. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  30. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, pp. 5099–5108 (2017)

    Google Scholar 

  31. Qin, Z., Wang, J., Lu, Y.: MonoGRNet: a geometric reasoning network for monocular 3D object localization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8851–8858 (2019)

    Google Scholar 

  32. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  33. Roddick, T., Kendall, A., Cipolla, R.: Orthographic feature transform for monocular 3D object detection. arXiv preprint arXiv:1811.08188 (2018)

  34. Simonelli, A., Bulo, S.R., Porzi, L., Lopez-Antequera, M., Kontschieder, P.: Disentangling monocular 3D object detection. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  35. Wang, Y., Chao, W.L., Garg, D., Hariharan, B., Campbell, M., Weinberger, K.Q.: Pseudo-lidar from visual depth estimation: bridging the gap in 3D object detection for autonomous driving. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  36. Weng, X., Kitani, K.: Monocular 3D object detection with pseudo-lidar point cloud. In: IEEE International Conference on Computer Vision (ICCV) Workshops, October 2019

    Google Scholar 

  37. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)

    Google Scholar 

  38. Xu, B., Chen, Z.: Multi-level fusion based 3D object detection from monocular images. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  39. You, Y., et al.: Pseudo-LiDAR++: accurate depth for 3D object detection in autonomous driving. arXiv preprint arXiv:1906.06310 (2019)

  40. Zhou, D., Zhou, X., Zhang, H., Yi, S., Ouyang, W.: Cheaper pre-training lunch: an efficient paradigm for object detection. arXiv preprint arXiv:2004.12178 (2020)

Download references

Acknowledgement

This work was supported by SenseTime, the Australian Research Council Grant DP200103223, and Australian Medical Research Future Fund MRFAI000085.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanli Ouyang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2848 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, X., Liu, S., Xia, Z., Zhang, H., Zeng, X., Ouyang, W. (2020). Rethinking Pseudo-LiDAR Representation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12358. Springer, Cham. https://doi.org/10.1007/978-3-030-58601-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58601-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58600-3

  • Online ISBN: 978-3-030-58601-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics