Advertisement

Deep Near-Light Photometric Stereo for Spatially Varying Reflectances

Conference paper
  • 602 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12353)

Abstract

This paper presents a near-light photometric stereo method for spatially varying reflectances. Recent studies in photometric stereo proposed learning-based approaches to handle diverse real-world reflectances and achieve high accuracy compared to conventional methods. However, they assume distant (i.e., parallel) lights, which can in practical settings only be approximately realized, and they fail in near-light conditions. Near-light photometric stereo methods address near-light conditions but previous works are limited to over-simplified reflectances, such as Lambertian reflectance. The proposed method takes a hybrid approach of distant- and near-light models, where the surface normal of a small area (corresponding to a pixel) is computed locally with a distant light assumption, and the reconstruction error is assessed based on a near-light image formation model. This paper is the first work to solve unknown, spatially varying, diverse reflectances in near-light photometric stereo.

Keyword

Near-light photometric stereo 

Notes

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number JP19H01123. Hiroaki Santo and Michael Waechter are grateful for support through a JSPS Research Fellowship for Young Scientists (JP19J10326) and JSPS Postdoctoral Fellowship (JP17F17350), respectively.

Supplementary material

504445_1_En_9_MOESM1_ESM.pdf (17.3 mb)
Supplementary material 1 (pdf 17708 KB)

References

  1. 1.
    Ackermann, J., Fuhrmann, S., Goesele, M.: Geometric point light source calibration. In: Vision, Modeling, and Visualization, pp. 161–168 (2013)Google Scholar
  2. 2.
    Ahmad, J., Sun, J., Smith, L., Smith, M.: An improved photometric stereo through distance estimation and light vector optimization from diffused maxima region. Pattern Recogn. Lett. 50, 15–22 (2014)CrossRefGoogle Scholar
  3. 3.
    Blinn, J.F.: Models of light reflection for computer synthesized pictures. In: SIGGRAPH (1977)Google Scholar
  4. 4.
    Bony, A., Bringier, B., Khoudeir, M.: Tridimensional reconstruction by photometric stereo with near spot light sources. In: European Signal Processing Conference (2013)Google Scholar
  5. 5.
    Burley, B.: Physically-based shading at Disney. In: SIGGRAPH 2012 Course Notes (2012)Google Scholar
  6. 6.
    Chen, G., Han, K., Wong, K.Y.K.: PS-FCN: a flexible learning framework for photometric stereo. In: European Conference on Computer Vision (ECCV) (2018)Google Scholar
  7. 7.
    Chen, L., Zheng, Y., Shi, B., Subpa-Asa, A., Sato, I.: A microfacet-based reflectance model for photometric stereo with highly specular surfaces. In: International Conference on Computer Vision (ICCV) (2017)Google Scholar
  8. 8.
    Collins, T., Bartoli, A.: 3D reconstruction in laparoscopy with close-range photometric stereo. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7511, pp. 634–642. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33418-4_78CrossRefGoogle Scholar
  9. 9.
    Georghiades, A.S.: Incorporating the Torrance and Sparrow model of reflectance in uncalibrated photometric stereo. In: International Conference on Computer Vision (ICCV) (2003)Google Scholar
  10. 10.
    Huang, X., Walton, M., Bearman, G., Cossairt, O.: Near light correction for image relighting and 3D shape recovery. In: 2015 Digital Heritage (2015)Google Scholar
  11. 11.
    Ikehata, S.: CNN-PS: CNN-based photometric stereo for general non-convex surfaces. In: European Conference on Computer Vision (ECCV) (2018)Google Scholar
  12. 12.
    Iwahori, Y., Sugie, H., Ishii, N.: Reconstructing shape from shading images under point light source illumination. In: International Conference on Pattern Recognition (ICPR) (1990)Google Scholar
  13. 13.
    Johnson, M.K., Adelson, E.H.: Shape estimation in natural illumination. In: Computer Vision and Pattern Recognition (CVPR) (2011)Google Scholar
  14. 14.
    Kingma, D., Ba, J.: Adam: a method for stochastic optimization (2014)Google Scholar
  15. 15.
    Ma, L., Liu, J., Pei, X., Hu, Y., Sun, F.: Calibration of position and orientation for point light source synchronously with single image in photometric stereo. Opt. Express 27(4), 4024–4033 (2019)CrossRefGoogle Scholar
  16. 16.
    Matusik, W., Pfister, H., Brand, M., McMillan, L.: A data-driven reflectance model. Trans. Graph. (TOG) 22(3), 759–769 (2003)CrossRefGoogle Scholar
  17. 17.
    Mecca, R., Quéau, Y.: Unifying diffuse and specular reflections for the photometric stereo problem. In: Winter Conference on Applications of Computer Vision (WACV) (2016)Google Scholar
  18. 18.
    Mecca, R., Rodolà, E., Cremers, D.: Realistic photometric stereo using partial differential irradiance equation ratios. Comput. Graph. 51, 8–16 (2015)CrossRefGoogle Scholar
  19. 19.
    Mecca, R., Wetzler, A., Bruckstein, A.M., Kimmel, R.: Near field photometric stereo with point light sources. SIAM J. Imaging Sci. 7(4), 2732–2770 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Nie, Y., Song, Z.: A novel photometric stereo method with nonisotropic point light sources. In: International Conference on Pattern Recognition (ICPR), pp. 1737–1742. IEEE (2016)Google Scholar
  21. 21.
    Park, J., Sinha, S.N., Matsushita, Y., Tai, Y., Kweon, I.: Calibrating a non-isotropic near point light source using a plane. In: Computer Vision and Pattern Recognition (CVPR), pp. 2267–2274 (2014)Google Scholar
  22. 22.
    Quéau, Y., Durix, B., Wu, T., Cremers, D., Lauze, F., Durou, J.D.: LED-based photometric stereo: modeling, calibration and numerical solution. J. Math. Imaging Vis. 60(3), 313–340 (2018).  https://doi.org/10.1007/s10851-017-0761-1MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Quéau, Y., Durou, J.D., Aujol, J.F.: Variational methods for normal integration. J. Math. Imaging Vis. 60(4), 609–632 (2018).  https://doi.org/10.1007/s10851-017-0777-6MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Quéau, Y., Wu, T., Lauze, F., Durou, J.D., Cremers, D.: A non-convex variational approach to photometric stereo under inaccurate lighting. In: Computer Vision and Pattern Recognition (CVPR) (2017)Google Scholar
  25. 25.
    Rodolà, E., Albarelli, A., Bergamasco, F., Torsello, A.: A scale independent selection process for 3D object recognition in cluttered scenes. Int. J. Comput. Vis. (IJCV) 102(1–3), 129–145 (2013).  https://doi.org/10.1007/s11263-012-0568-xMathSciNetCrossRefGoogle Scholar
  26. 26.
    Santo, H., Samejima, M., Sugano, Y., Shi, B., Matsushita, Y.: Deep photometric stereo network. In: ICCV Workshop on Physics Based Vision meets Deep Learning (PBDL) (2017)Google Scholar
  27. 27.
    Santo, H., Waechter, M., Lin, W.Y., Sugano, Y., Matsushita, Y.: Light structure from pin motion: geometric point light source calibration. Int. J. Comput. Vis. (IJCV) 128(7), 1889–1912 (2020).  https://doi.org/10.1007/s11263-020-01312-3MathSciNetCrossRefGoogle Scholar
  28. 28.
    Shi, B., Mo, Z., Wu, Z., Duan, D., Yeung, S.K., Tan, P.: A benchmark dataset and evaluation for non-Lambertian and uncalibrated photometric stereo. Trans. Pattern Anal. Machi. Intell. (PAMI) 41(2), 271–284 (2019)CrossRefGoogle Scholar
  29. 29.
    Shi, B., Tan, P., Matsushita, Y., Ikeuchi, K.: Bi-polynomial modeling of low-frequency reflectances. Trans. Pattern Anal. Machi. Intell. (PAMI) 36(6), 1078–1091 (2014)CrossRefGoogle Scholar
  30. 30.
    Silver, W.M.: Determining shape and reflectance using multiple images. Master’s Thesis, Massachusetts Institute of Technology (1980)Google Scholar
  31. 31.
    Taniai, T., Maehara, T.: Neural inverse rendering for general reflectance photometric stereo. In: International Conference on Machine Learning (ICML) (2018)Google Scholar
  32. 32.
    Torrance, K.E., Sparrow, E.M.: Theory for off-specular reflection from roughened surfaces. JOSA 57(9), 1105–1114 (1967)CrossRefGoogle Scholar
  33. 33.
    Turk, G., Levoy, M.: Zippered polygon meshes from range images. In: SIGGRAPH. ACM (1994)Google Scholar
  34. 34.
    Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Opt. Eng. 19(1), 139–144 (1980)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Graduate School of Information Science and TechnologyOsaka UniversityOsakaJapan

Personalised recommendations