Abstract
People learn throughout life. However, incrementally updating conventional neural networks leads to catastrophic forgetting. A common remedy is replay, which is inspired by how the brain consolidates memory. Replay involves fine-tuning a network on a mixture of new and old instances. While there is neuroscientific evidence that the brain replays compressed memories, existing methods for convolutional networks replay raw images. Here, we propose REMIND, a brain-inspired approach that enables efficient replay with compressed representations. REMIND is trained in an online manner, meaning it learns one example at a time, which is closer to how humans learn. Under the same constraints, REMIND outperforms other methods for incremental class learning on the ImageNet ILSVRC-2012 dataset. We probe REMIND’s robustness to data ordering schemes known to induce catastrophic forgetting. We demonstrate REMIND’s generality by pioneering online learning for Visual Question Answering (VQA) (https://github.com/tyler-hayes/REMIND).
Keywords
- Online learning
- Brain-inspired
- Deep learning
T. L. Hayes, K. Kafle, R. Shrestha—Equal Contribution.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Abraham, W.C., Robins, A.: Memory retention-the synaptic stability versus plasticity dilemma. Trends Neurosci. 28, 73–78 (2005)
Acharya, M., Jariwala, K., Kanan, C.: VQD: visual query detection in natural scenes. In: NAACL (2019)
Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., Tuytelaars, T.: Memory aware synapses: learning what (not) to forget. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 144–161. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_9
Aljundi, R., et al.: Online continual learning with maximal interfered retrieval. In: NeurIPS, pp. 11849–11860 (2019)
Aljundi, R., Lin, M., Goujaud, B., Bengio, Y.: Gradient based sample selection for online continual learning. In: NeurIPS, pp. 11816–11825 (2019)
Anderson, P., et al.: Bottom-up and top-down attention for image captioning and visual question answering. In: CVPR (2018)
Andreas, J., Rohrbach, M., Darrell, T., Klein, D.: Neural module networks. In: CVPR, pp. 39–48 (2016)
Antol, S., et al.: VQA: visual question answering. In: ICCV (2015)
Barnes, D.C., Wilson, D.A.: Slow-wave sleep-imposed replay modulates both strength and precision of memory. J. Neurosci. 34(15), 5134–5142 (2014)
Ben-Younes, H., Cadene, R., Cord, M., Thome, N.: Mutan: multimodal tucker fusion for visual question answering. In: ICCV (2017)
Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: ICML, pp. 41–48 (2009)
Bernardi, R., et al.: Automatic description generation from images: a survey of models, datasets, and evaluation measures. J. Artif. Intell. Res. 55, 409–442 (2016)
Castro, F.M., Marín-Jiménez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-End incremental learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 241–257. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_15
Chaudhry, A., Dokania, P.K., Ajanthan, T., Torr, P.H.S.: Riemannian walk for incremental learning: understanding forgetting and intransigence. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 556–572. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_33
Chaudhry, A., Ranzato, M., Rohrbach, M., Elhoseiny, M.: Efficient lifelong learning with A-GEM. In: ICLR (2019)
Dhar, P., Singh, R.V., Peng, K.C., Wu, Z., Chellappa, R.: Learning without memorizing. In: CVPR, pp. 5138–5146 (2019)
Farquhar, S., Gal, Y.: Towards robust evaluations of continual learning. arXiv:1805.09733 (2018)
Fernando, C., et al.: Pathnet: evolution channels gradient descent in super neural networks. arXiv:1701.08734 (2017)
Fukui, A., Park, D.H., Yang, D., Rohrbach, A., Darrell, T., Rohrbach, M.: Multimodal compact bilinear pooling for visual question answering and visual grounding. In: EMNLP (2016)
Gama, J.: Knowledge Discovery from Data Streams. Chapman and Hall/CRC, Boca Raton (2010)
Gama, J., Sebastião, R., Rodrigues, P.P.: On evaluating stream learning algorithms. Mach. Learn. 90(3), 317–346 (2013). https://doi.org/10.1007/s10994-012-5320-9
Hayes, T.L., Cahill, N.D., Kanan, C.: Memory efficient experience replay for streaming learning. In: ICRA (2019)
Hayes, T.L., Kanan, C.: Lifelong machine learning with deep streaming linear discriminant analysis. In: CVPRW (2020)
Hayes, T.L., Kemker, R., Cahill, N.D., Kanan, C.: New metrics and experimental paradigms for continual learning. In: CVPRW, pp. 2031–2034 (2018)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Lifelong learning via progressive distillation and retrospection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 452–467. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_27
Hou, S., Pan, X., Wang, Z., Change Loy, C., Lin, D.: Learning a unified classifier incrementally via rebalancing. In: CVPR (2019)
Hudson, D.A., Manning, C.D.: Compositional attention networks for machine reasoning. In: ICLR (2018)
Insausti, R., et al.: The nonhuman primate hippocampus: neuroanatomy and patterns of cortical connectivity. In: Hannula, D.E., Duff, M.C. (eds.) The Hippocampus from Cells to Systems, pp. 3–36. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50406-3_1
Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. TPAMI 33(1), 117–128 (2010)
Ji, D., Wilson, M.A.: Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat. Neurosci. 10(1), 100–107 (2007)
Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. IEEE Trans. Big Data (2019)
Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Zitnick, C.L., Girshick, R.: Clevr: a diagnostic dataset for compositional language and elementary visual reasoning. In: CVPR (2017)
Kafle, K., Kanan, C.: Answer-type prediction for visual question answering. In: CVPR, pp. 4976–4984 (2016)
Kafle, K., Kanan, C.: An analysis of visual question answering algorithms. In: ICCV, pp. 1983–1991 (2017)
Kafle, K., Kanan, C.: Visual question answering: datasets, algorithms, and future challenges. Comput. Vis. Image Underst. 163, 3–20 (2017)
Kafle, K., Price, B., Cohen, S., Kanan, C.: DVQA: understanding data visualizations via question answering. In: CVPR, pp. 5648–5656 (2018)
Kafle, K., Shrestha, R., Cohen, S., Price, B., Kanan, C.: Answering questions about data visualizations using efficient bimodal fusion. In: WACV, pp. 1498–1507 (2020)
Kafle, K., Shrestha, R., Kanan, C.: Challenges and prospects in vision and language research. Front. Artif. Intell. 2, 28 (2019)
Kahou, S.E., Michalski, V., Atkinson, A., Kádár, Á., Trischler, A., Bengio, Y.: Figureqa: An annotated figure dataset for visual reasoning. arXiv preprint arXiv:1710.07300 (2017)
Karlsson, M.P., Frank, L.M.: Awake replay of remote experiences in the hippocampus. Nat. Neurosci. 12(7), 913 (2009)
Kazemi, V., Elqursh, A.: Show, ask, attend, and answer: a strong baseline for visual question answering. arXiv:1704.03162 (2017)
Kazemzadeh, S., Ordonez, V., Matten, M., Berg, T.: Referitgame: Referring to objects in photographs of natural scenes. In: EMNLP, pp. 787–798 (2014)
Kemker, R., Kanan, C.: FearNet: brain-inspired model for incremental learning. In: ICLR (2018)
Kemker, R., McClure, M., Abitino, A., Hayes, T.L., Kanan, C.: Measuring catastrophic forgetting in neural networks. In: AAAI (2018)
Kim, J.H., Jun, J., Zhang, B.T.: Bilinear attention networks. In: NeurIPS, pp. 1564–1574 (2018)
Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. In: PNAS (2017)
Konkel, A., Warren, D.E., Duff, M.C., Tranel, D., Cohen, N.J.: Hippocampal amnesia impairs all manner of relational memory. Front. Hum. Neurosci. 2, 15 (2008)
Le, T., Stahl, F., Gaber, M.M., Gomes, J.B., Di Fatta, G.: On expressiveness and uncertainty awareness in rule-based classification for data streams. Neurocomputing 265, 127–141 (2017)
Lee, K., Lee, K., Shin, J., Lee, H.: Overcoming catastrophic forgetting with unlabeled data in the wild. In: ICCV, pp. 312–321 (2019)
Lewis, P.A., Durrant, S.J.: Overlapping memory replay during sleep builds cognitive schemata. Trends Cogn. Sci. 15(8), 343–351 (2011)
Lomonaco, V., Maltoni, D.: Core50: a new dataset and benchmark for continuous object recognition. In: CoRL, pp. 17–26 (2017)
Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning. In: NeurIPS, pp. 6467–6476 (2017)
Malinowski, M., Fritz, M.: A multi-world approach to question answering about real-world scenes based on uncertain input. In: NeurIPS (2014)
Marois, V., Jayram, T., Albouy, V., Kornuta, T., Bouhadjar, Y., Ozcan, A.S.: On transfer learning using a mac model variant. arXiv:1811.06529 (2018)
McClelland, J.L., Goddard, N.H.: Considerations arising from a complementary learning systems perspective on hippocampus and neocortex. Hippocampus 6(6), 654–665 (1996)
McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: the sequential learning problem. Psychol. Learn. Motiv. 24, 109–165 (1989)
Nguyen, C.V., Li, Y., Bui, T.D., Turner, R.E.: Variational continual learning. In: ICLR (2018)
Ostapenko, O., Puscas, M., Klein, T., Jähnichen, P., Nabi, M.: Learning to remember: a synaptic plasticity driven framework for continual learning. In: CVPR (2019)
O’Neill, J., Pleydell-Bouverie, B., Dupret, D., Csicsvari, J.: Play it again: reactivation of waking experience and memory. Trends Neurosci. 33(5), 220–229 (2010)
Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong learning with neural networks: a review. Neural Netw. 113, 54–71 (2019)
Parisi, G.I., Tani, J., Weber, C., Wermter, S.: Lifelong learning of spatiotemporal representations with dual-memory recurrent self-organization. Front. Neurorobot. 12, 78 (2018)
Plummer, B.A., Wang, L., Cervantes, C.M., Caicedo, J.C., Hockenmaier, J., Lazebnik, S.: Flickr30k entities: collecting region-to-phrase correspondences for richer image-to-sentence models. In: ICCV, pp. 2641–2649 (2015)
Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: icarl: incremental classifier and representation learning. In: CVPR (2017)
Riemer, M., et al.: Learning to learn without forgetting by maximizing transfer and minimizing interference. In: ICLR (2019)
Ritter, H., Botev, A., Barber, D.: Online structured Laplace approximations for overcoming catastrophic forgetting. In: NeurIPS, pp. 3738–3748 (2018)
Rohrbach, A., Rohrbach, M., Hu, R., Darrell, T., Schiele, B.: Grounding of textual phrases in images by reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 817–834. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_49
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. IJCV 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y
Rusu, A.A., et al.: Progressive neural networks. arXiv:1606.04671 (2016)
Serra, J., Suris, D., Miron, M., Karatzoglou, A.: Overcoming catastrophic forgetting with hard attention to the task. In: ICML, pp. 4555–4564 (2018)
Shrestha, R., Kafle, K., Kanan, C.: Answer them all! toward universal visual question answering models. In: CVPR (2019)
Stickgold, R., Hobson, J.A., Fosse, R., Fosse, M.: Sleep, learning, and dreams: off-line memory reprocessing. Science 294(5544), 1052–1057 (2001)
Subramanian, S., Trischler, A., Bengio, Y., Pal, C.J.: Learning general purpose distributed sentence representations via large scale multi-task learning. In: ICLR (2018)
Takahashi, S.: Episodic-like memory trace in awake replay of hippocampal place cell activity sequences. Elife 4, e08105 (2015)
Teyler, T.J., Rudy, J.W.: The hippocampal indexing theory and episodic memory: updating the index. Hippocampus 17(12), 1158–1169 (2007)
Verma, V., et al.: Manifold mixup: better representations by interpolating hidden states. In: ICML (2019)
Wu, Y., et al.: Large scale incremental learning. In: CVPR, pp. 374–382 (2019)
Yang, Z., He, X., Gao, J., Deng, L., Smola, A.J.: Stacked attention networks for image question answering. In: CVPR (2016)
Yoon, J., Yang, E., Lee, J., Hwang, S.J.: Lifelong learning with dynamically expandable networks. In: ICLR (2018)
Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: NeurIPS, pp. 3320–3328 (2014)
Zenke, F., Poole, B., Ganguli, S.: Continual learning through synaptic intelligence. In: ICML, pp. 3987–3995 (2017)
Acknowledgements
This work was supported in part by the DARPA/MTO Lifelong Learning Machines program [W911NF-18-2-0263], AFOSR grant [FA9550-18-1-0121], NSF award #1909696, and a gift from Adobe Research. We thank NVIDIA for the GPU donation. The views and conclusions contained herein are those of the authors and should not be interpreted as representing the official policies or endorsements of any sponsor. We thank Michael Mozer, Ryne Roady, and Zhongchao Qian for feedback on early drafts of this paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Hayes, T.L., Kafle, K., Shrestha, R., Acharya, M., Kanan, C. (2020). REMIND Your Neural Network to Prevent Catastrophic Forgetting. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12353. Springer, Cham. https://doi.org/10.1007/978-3-030-58598-3_28
Download citation
DOI: https://doi.org/10.1007/978-3-030-58598-3_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58597-6
Online ISBN: 978-3-030-58598-3
eBook Packages: Computer ScienceComputer Science (R0)