Advertisement

3PointTM: Faster Measurement of High-Dimensional Transmission Matrices

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12353)

Abstract

A transmission matrix (TM) describes the linear relationship between input and output phasor fields when a coherent wave passes through a scattering medium. Measurement of the TM enables numerous applications, but is challenging and time-intensive for an arbitrary medium. State-of-the-art methods, including phase-shifting holography and double phase retrieval, require significant amounts of measurements, and post-capture reconstruction that is often computationally intensive. In this paper, we propose 3PointTM, an approach for sensing TMs that uses a minimal number of measurements per pixel—reducing the measurement budget by a factor of two as compared to state of the art in phase-shifting holography for measuring TMs—and has a low computational complexity as compared to phase retrieval. We validate our approach on real and simulated data, and show successful focusing of light and image reconstruction on dense scattering media.

Keywords

Transmission matrix Inverse scattering Imaging Focusing Optimization Phase modulation 

Notes

Acknowledgements

The authors acknowledge support via the NSF Expeditions in Computing Grant for the project “See below the skin” (#1730574, #1730147). ACS also was supported in part by the NSF CAREER award CCF-1652569.

References

  1. 1.
    Andreoli, D., Volpe, G., Popoff, S., Katz, O., Grésillon, S., Gigan, S.: Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix. Sci. Rep. 5, 10347 (2015)CrossRefGoogle Scholar
  2. 2.
    Awatsuji, Y., Fujii, A., Kubota, T., Matoba, O.: Parallel three-step phase-shifting digital holography. Appl. Opt. 45, 2995–3002 (2006)CrossRefGoogle Scholar
  3. 3.
    Awatsuji, Y., et al.: Parallel two-step phase-shifting digital holography. Appl. Opt. 47, D183–D189 (2008)CrossRefGoogle Scholar
  4. 4.
    Beenakker, C.W.J.: Random-matrix theory of quantum transport. Rev. Mod. Phys. 69, 731–808 (1997)CrossRefGoogle Scholar
  5. 5.
    Briers, J., Webster, S.: Quasi real-time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields. Opt. Commun. 116, 36–42 (1995)CrossRefGoogle Scholar
  6. 6.
    Chaigne, T., Katz, O., Boccara, A.C., Fink, M., Bossy, E., Gigan, S.: Controlling light in scattering media non-invasively using the photoacoustic transmission matrix. Nat. Photonics 8(1), 58 (2014)CrossRefGoogle Scholar
  7. 7.
    Conkey, D., Brown, A., Caravaca-Aguirre, A., Piestun, R.: Genetic algorithm optimization for focusing through turbid media in noisy environments. Opt. Express 20(5), 4840–4849 (2012)CrossRefGoogle Scholar
  8. 8.
    Conkey, D.B., Brown, A.N., Caravaca-Aguirre, A.M., Piestun, R.: Genetic algorithm optimization for focusing through turbid media in noisy environments. Opt. Express 20(5), 4840–4849 (2012)CrossRefGoogle Scholar
  9. 9.
    Conkey, D.B., Caravaca-Aguirre, A.M., Piestun, R.: High-speed scattering medium characterization with application to focusing light through turbid media. Opt. Express 20(2), 1733–1740 (2012)CrossRefGoogle Scholar
  10. 10.
    Debevec, P., Hawkins, T., Tchou, C., Duiker, H.P., Sarokin, W., Sagar, M.: Acquiring the reflectance field of a human face. In: SIGGRAPH (2000)Google Scholar
  11. 11.
    Dennis, B., Haftel, M., Czaplewski, D.: Compact nanomechanical plasmonic phase modulators. Nat. Photonics 9, 267–273 (2015)CrossRefGoogle Scholar
  12. 12.
    Drémeau, A., et al.: Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques. Opt. Express 23(9), 11898–11911 (2015).  https://doi.org/10.1364/OE.23.011898, http://www.opticsexpress.org/abstract.cfm?URI=oe-23-9-11898
  13. 13.
    Freund, I.: Looking through walls and around corners. Phys. A 168(1), 49–65 (1990)CrossRefGoogle Scholar
  14. 14.
    Garcia, N., Genack, A.Z.: Crossover to strong intensity correlation for microwave radiation in random media. Phys. Rev. Lett. 63, 1678–1681 (1989)CrossRefGoogle Scholar
  15. 15.
    Goodman, J.W.: Statistical Optics. Wiley, New York (2000)Google Scholar
  16. 16.
    Hore, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: 2010 20th International Conference on Pattern Recognition, pp. 2366–2369 (2010)Google Scholar
  17. 17.
    Horstmeyer, R., Ruan, H., Yang, C.: Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photonics 9(9), 563 (2015)CrossRefGoogle Scholar
  18. 18.
    Indebetouw, G., Klysubun, P.: Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography. Opt. Lett. 25(4), 212–214 (2000)CrossRefGoogle Scholar
  19. 19.
    Katz, O., Heidmann, P., Fink, M., Gigan, S.: Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photonics 8(10), 784–790 (2014)CrossRefGoogle Scholar
  20. 20.
    Katz, O., Small, E., Bromberg, Y., Silberberg, Y.: Focusing and compression of ultrashort pulses through scattering media. Nat. Photonics 5(6), 372 (2011)CrossRefGoogle Scholar
  21. 21.
    Levenberg, K.: A method for the solution of certain problems in least-squares. Q. Appl. Math. 2, 164–168 (1944)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Liu, J.P., Poon, T.C.: Two-step-only quadrature phase-shifting digital holography. Opt. Lett. 34, 250–252 (2009)CrossRefGoogle Scholar
  23. 23.
    Liu, J.P., Poon, T.C., Jhou, G.S., Chen, P.J.: Comparison of two-, three-, and four-exposure quadrature phase-shifting holography. Appl. Opt. 50, 2443–2450 (2011)CrossRefGoogle Scholar
  24. 24.
    Ma, C., Xu, X., Liu, Y., Wang, L.V.: Time-reversed adapted-perturbation (trap) optical focusing onto dynamic objects inside scattering media. Nat. Photonics 8(12), 931 (2014)CrossRefGoogle Scholar
  25. 25.
    Ma, X., Xiao, W., Pan, F.: Optical tomographic reconstruction based on multi-slice wave propagation method. Opt. Express 25(19), 22595–22607 (2017)CrossRefGoogle Scholar
  26. 26.
    Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11, 431–441 (1963)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Metzler, C.A., Sharma, M.K., Nagesh, S., Baraniuk, R.G., Cossairt, O., Veeraraghavan, A.: Coherent inverse scattering via transmission matrices: efficient phase retrieval algorithms and a public dataset. In: 2017 IEEE International Conference on Computational Photography (ICCP), pp. 1–16. IEEE (2017)Google Scholar
  28. 28.
    Moravec, M.L., Romberg, J.K., Baraniuk, R.G.: Compressive phase retrieval. In: Optical Engineering+ Applications, pp. 670120–670120. International Society for Optics and Photonics (2007)Google Scholar
  29. 29.
    Mosk, A.P., Lagendijk, A., Lerosey, G., Fink, M.: Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics 6(5), 283 (2012)CrossRefGoogle Scholar
  30. 30.
    Mounaix, M., et al.: Spatiotemporal coherent control of light through a multiple scattering medium with the multispectral transmission matrix. Phys. Rev. Lett. 116(25), 253901 (2016)CrossRefGoogle Scholar
  31. 31.
    Naik, N., Zhao, S., Velten, A., Raskar, R., Bala, K.: Single view reflectance capture using multiplexed scattering and time-of-flight imaging. In: ACM Transactions on Graphics (TOG), vol. 30, p. 171. ACM (2011)Google Scholar
  32. 32.
    Paciaroni, M., Linne, M.: Single-shot, two-dimensional ballistic imaging through scattering media. Appl. Opt. 43(26), 5100–5109 (2004)CrossRefGoogle Scholar
  33. 33.
    Popoff, S., Lerosey, G., Fink, M., Boccara, A.C., Gigan, S.: Image transmission through an opaque material. Nat. Commun. 1, 81 (2010)CrossRefGoogle Scholar
  34. 34.
    Popoff, S., Lerosey, G., Carminati, R., Fink, M., Boccara, A., Gigan, S.: Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104(10), 100601 (2010)CrossRefGoogle Scholar
  35. 35.
    Rajaei, B., Tramel, E.W., Gigan, S., Krzakala, F., Daudet, L.: Intensity-only optical compressive imaging using a multiply scattering material and a double phase retrieval approach. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4054–4058, March 2016.  https://doi.org/10.1109/ICASSP.2016.7472439
  36. 36.
    Schechner, Y.Y., Nayar, S.K., Belhumeur, P.N.: Multiplexing for optimal lighting. IEEE Trans. Pattern Anal. Mach. Intell. 29(8), 1339–1354 (2007)CrossRefGoogle Scholar
  37. 37.
    Sharma, M., Metzler, C.A., Nagesh, S., Cossairt, O., Baraniuk, R.G., Veeraraghavan, A.: Inverse scattering via transmission matrices: broadband illumination and fast phase retrieval algorithms. IEEE Trans. Comput. Imaging (2019)Google Scholar
  38. 38.
    Shechtman, Y., Eldar, Y.C., Cohen, O., Chapman, H.N., Miao, J., Segev, M.: Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Process. Mag. 32(3), 87–109 (2015)CrossRefGoogle Scholar
  39. 39.
    Vellekoop, I.M., Mosk, A.: Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32(16), 2309–2311 (2007)CrossRefGoogle Scholar
  40. 40.
    Velten, A., Willwacher, T., Gupta, O., Veeraraghavan, A., Bawendi, M.G., Raskar, R.: Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nat. Commun. 3, 745 (2012)CrossRefGoogle Scholar
  41. 41.
    Wu, S.T., Hong, J.L.: Five-point amplitude estimation of sinusoidal signals: With application to LVDT signal conditioning. IEEE Trans. Instrum. Meas. 13(3), 623–630 (2010)Google Scholar
  42. 42.
    Xu, X., Liu, H., Wang, L.V.: Time-reversed ultrasonically encoded optical focusing into scattering media. Nat. Photonics 5(3), 154 (2011)CrossRefGoogle Scholar
  43. 43.
    Zhou, E.H., Ruan, H., Yang, C., Judkewitz, B.: Focusing on moving targets through scattering samples. Optica 1(4), 227–232 (2014)CrossRefGoogle Scholar
  44. 44.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Rice UniversityHoustonUSA
  2. 2.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations