Skip to main content

3PointTM: Faster Measurement of High-Dimensional Transmission Matrices

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12353))

Abstract

A transmission matrix (TM) describes the linear relationship between input and output phasor fields when a coherent wave passes through a scattering medium. Measurement of the TM enables numerous applications, but is challenging and time-intensive for an arbitrary medium. State-of-the-art methods, including phase-shifting holography and double phase retrieval, require significant amounts of measurements, and post-capture reconstruction that is often computationally intensive. In this paper, we propose 3PointTM, an approach for sensing TMs that uses a minimal number of measurements per pixel—reducing the measurement budget by a factor of two as compared to state of the art in phase-shifting holography for measuring TMs—and has a low computational complexity as compared to phase retrieval. We validate our approach on real and simulated data, and show successful focusing of light and image reconstruction on dense scattering media.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andreoli, D., Volpe, G., Popoff, S., Katz, O., Grésillon, S., Gigan, S.: Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix. Sci. Rep. 5, 10347 (2015)

    Article  Google Scholar 

  2. Awatsuji, Y., Fujii, A., Kubota, T., Matoba, O.: Parallel three-step phase-shifting digital holography. Appl. Opt. 45, 2995–3002 (2006)

    Article  Google Scholar 

  3. Awatsuji, Y., et al.: Parallel two-step phase-shifting digital holography. Appl. Opt. 47, D183–D189 (2008)

    Article  Google Scholar 

  4. Beenakker, C.W.J.: Random-matrix theory of quantum transport. Rev. Mod. Phys. 69, 731–808 (1997)

    Article  Google Scholar 

  5. Briers, J., Webster, S.: Quasi real-time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields. Opt. Commun. 116, 36–42 (1995)

    Article  Google Scholar 

  6. Chaigne, T., Katz, O., Boccara, A.C., Fink, M., Bossy, E., Gigan, S.: Controlling light in scattering media non-invasively using the photoacoustic transmission matrix. Nat. Photonics 8(1), 58 (2014)

    Article  Google Scholar 

  7. Conkey, D., Brown, A., Caravaca-Aguirre, A., Piestun, R.: Genetic algorithm optimization for focusing through turbid media in noisy environments. Opt. Express 20(5), 4840–4849 (2012)

    Article  Google Scholar 

  8. Conkey, D.B., Brown, A.N., Caravaca-Aguirre, A.M., Piestun, R.: Genetic algorithm optimization for focusing through turbid media in noisy environments. Opt. Express 20(5), 4840–4849 (2012)

    Article  Google Scholar 

  9. Conkey, D.B., Caravaca-Aguirre, A.M., Piestun, R.: High-speed scattering medium characterization with application to focusing light through turbid media. Opt. Express 20(2), 1733–1740 (2012)

    Article  Google Scholar 

  10. Debevec, P., Hawkins, T., Tchou, C., Duiker, H.P., Sarokin, W., Sagar, M.: Acquiring the reflectance field of a human face. In: SIGGRAPH (2000)

    Google Scholar 

  11. Dennis, B., Haftel, M., Czaplewski, D.: Compact nanomechanical plasmonic phase modulators. Nat. Photonics 9, 267–273 (2015)

    Article  Google Scholar 

  12. Drémeau, A., et al.: Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques. Opt. Express 23(9), 11898–11911 (2015). https://doi.org/10.1364/OE.23.011898, http://www.opticsexpress.org/abstract.cfm?URI=oe-23-9-11898

  13. Freund, I.: Looking through walls and around corners. Phys. A 168(1), 49–65 (1990)

    Article  Google Scholar 

  14. Garcia, N., Genack, A.Z.: Crossover to strong intensity correlation for microwave radiation in random media. Phys. Rev. Lett. 63, 1678–1681 (1989)

    Article  Google Scholar 

  15. Goodman, J.W.: Statistical Optics. Wiley, New York (2000)

    Google Scholar 

  16. Hore, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: 2010 20th International Conference on Pattern Recognition, pp. 2366–2369 (2010)

    Google Scholar 

  17. Horstmeyer, R., Ruan, H., Yang, C.: Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photonics 9(9), 563 (2015)

    Article  Google Scholar 

  18. Indebetouw, G., Klysubun, P.: Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography. Opt. Lett. 25(4), 212–214 (2000)

    Article  Google Scholar 

  19. Katz, O., Heidmann, P., Fink, M., Gigan, S.: Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photonics 8(10), 784–790 (2014)

    Article  Google Scholar 

  20. Katz, O., Small, E., Bromberg, Y., Silberberg, Y.: Focusing and compression of ultrashort pulses through scattering media. Nat. Photonics 5(6), 372 (2011)

    Article  Google Scholar 

  21. Levenberg, K.: A method for the solution of certain problems in least-squares. Q. Appl. Math. 2, 164–168 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, J.P., Poon, T.C.: Two-step-only quadrature phase-shifting digital holography. Opt. Lett. 34, 250–252 (2009)

    Article  Google Scholar 

  23. Liu, J.P., Poon, T.C., Jhou, G.S., Chen, P.J.: Comparison of two-, three-, and four-exposure quadrature phase-shifting holography. Appl. Opt. 50, 2443–2450 (2011)

    Article  Google Scholar 

  24. Ma, C., Xu, X., Liu, Y., Wang, L.V.: Time-reversed adapted-perturbation (trap) optical focusing onto dynamic objects inside scattering media. Nat. Photonics 8(12), 931 (2014)

    Article  Google Scholar 

  25. Ma, X., Xiao, W., Pan, F.: Optical tomographic reconstruction based on multi-slice wave propagation method. Opt. Express 25(19), 22595–22607 (2017)

    Article  Google Scholar 

  26. Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11, 431–441 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  27. Metzler, C.A., Sharma, M.K., Nagesh, S., Baraniuk, R.G., Cossairt, O., Veeraraghavan, A.: Coherent inverse scattering via transmission matrices: efficient phase retrieval algorithms and a public dataset. In: 2017 IEEE International Conference on Computational Photography (ICCP), pp. 1–16. IEEE (2017)

    Google Scholar 

  28. Moravec, M.L., Romberg, J.K., Baraniuk, R.G.: Compressive phase retrieval. In: Optical Engineering+ Applications, pp. 670120–670120. International Society for Optics and Photonics (2007)

    Google Scholar 

  29. Mosk, A.P., Lagendijk, A., Lerosey, G., Fink, M.: Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics 6(5), 283 (2012)

    Article  Google Scholar 

  30. Mounaix, M., et al.: Spatiotemporal coherent control of light through a multiple scattering medium with the multispectral transmission matrix. Phys. Rev. Lett. 116(25), 253901 (2016)

    Article  Google Scholar 

  31. Naik, N., Zhao, S., Velten, A., Raskar, R., Bala, K.: Single view reflectance capture using multiplexed scattering and time-of-flight imaging. In: ACM Transactions on Graphics (TOG), vol. 30, p. 171. ACM (2011)

    Google Scholar 

  32. Paciaroni, M., Linne, M.: Single-shot, two-dimensional ballistic imaging through scattering media. Appl. Opt. 43(26), 5100–5109 (2004)

    Article  Google Scholar 

  33. Popoff, S., Lerosey, G., Fink, M., Boccara, A.C., Gigan, S.: Image transmission through an opaque material. Nat. Commun. 1, 81 (2010)

    Article  Google Scholar 

  34. Popoff, S., Lerosey, G., Carminati, R., Fink, M., Boccara, A., Gigan, S.: Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104(10), 100601 (2010)

    Article  Google Scholar 

  35. Rajaei, B., Tramel, E.W., Gigan, S., Krzakala, F., Daudet, L.: Intensity-only optical compressive imaging using a multiply scattering material and a double phase retrieval approach. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4054–4058, March 2016. https://doi.org/10.1109/ICASSP.2016.7472439

  36. Schechner, Y.Y., Nayar, S.K., Belhumeur, P.N.: Multiplexing for optimal lighting. IEEE Trans. Pattern Anal. Mach. Intell. 29(8), 1339–1354 (2007)

    Article  Google Scholar 

  37. Sharma, M., Metzler, C.A., Nagesh, S., Cossairt, O., Baraniuk, R.G., Veeraraghavan, A.: Inverse scattering via transmission matrices: broadband illumination and fast phase retrieval algorithms. IEEE Trans. Comput. Imaging (2019)

    Google Scholar 

  38. Shechtman, Y., Eldar, Y.C., Cohen, O., Chapman, H.N., Miao, J., Segev, M.: Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Process. Mag. 32(3), 87–109 (2015)

    Article  Google Scholar 

  39. Vellekoop, I.M., Mosk, A.: Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32(16), 2309–2311 (2007)

    Article  Google Scholar 

  40. Velten, A., Willwacher, T., Gupta, O., Veeraraghavan, A., Bawendi, M.G., Raskar, R.: Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nat. Commun. 3, 745 (2012)

    Article  Google Scholar 

  41. Wu, S.T., Hong, J.L.: Five-point amplitude estimation of sinusoidal signals: With application to LVDT signal conditioning. IEEE Trans. Instrum. Meas. 13(3), 623–630 (2010)

    Google Scholar 

  42. Xu, X., Liu, H., Wang, L.V.: Time-reversed ultrasonically encoded optical focusing into scattering media. Nat. Photonics 5(3), 154 (2011)

    Article  Google Scholar 

  43. Zhou, E.H., Ruan, H., Yang, C., Judkewitz, B.: Focusing on moving targets through scattering samples. Optica 1(4), 227–232 (2014)

    Article  Google Scholar 

  44. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support via the NSF Expeditions in Computing Grant for the project “See below the skin” (#1730574, #1730147). ACS also was supported in part by the NSF CAREER award CCF-1652569.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujun Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Y., Sharma, M.K., Sabharwal, A., Veeraraghavan, A., Sankaranarayanan, A.C. (2020). 3PointTM: Faster Measurement of High-Dimensional Transmission Matrices. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12353. Springer, Cham. https://doi.org/10.1007/978-3-030-58598-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58598-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58597-6

  • Online ISBN: 978-3-030-58598-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics