Skip to main content

Cheaper Pre-training Lunch: An Efficient Paradigm for Object Detection

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12353))

Included in the following conference series:

Abstract

In this paper, we propose a general and efficient pre-training paradigm, Montage pre-training, for object detection. Montage pre-training needs only the target detection dataset while taking only 1/4 computational resources compared to the widely adopted ImageNet pre-training. To build such an efficient paradigm, we reduce the potential redundancy by carefully extracting useful samples from the original images, assembling samples in a Montage manner as input, and using an ERF-adaptive dense classification strategy for model pre-training. These designs include not only a new input pattern to improve the spatial utilization but also a novel learning objective to expand the effective receptive field of the pre-trained model. The efficiency and effectiveness of Montage pre-training are validated by extensive experiments on the MS-COCO dataset, where the results indicate that the models using Montage pre-training are able to achieve on-par or even better detection performances compared with the ImageNet pre-training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brazil, G., Liu, X.: M3D-RPN: monocular 3D region proposal network for object detection. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  2. Chen, K., et al.: Towards accurate one-stage object detection with AP-loss. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5119–5127 (2019)

    Google Scholar 

  3. Dai, J., et al.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 764–773 (2017)

    Google Scholar 

  4. Divvala, S.K., Hoiem, D., Hays, J.H., Efros, A.A., Hebert, M.: An empirical study of context in object detection. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1271–1278. IEEE (2009)

    Google Scholar 

  5. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  6. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. arXiv preprint arXiv:1911.05722 (2019)

  7. He, K., Girshick, R., Dollár, P.: Rethinking ImageNet pre-training. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4918–4927 (2019)

    Google Scholar 

  8. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  9. Jiang, C., Xu, H., Zhang, W., Liang, X., Li, Z.: SP-NAS: serial-to-parallel backbone search for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11863–11872 (2020)

    Google Scholar 

  10. Kornblith, S., Shlens, J., Le, Q.V.: Do better imagenet models transfer better? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2661–2671 (2019)

    Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  12. Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 734–750 (2018)

    Google Scholar 

  13. Li, Y., Chen, Y., Wang, N., Zhang, Z.: Scale-aware trident networks for object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6054–6063 (2019)

    Google Scholar 

  14. Li, Z., Peng, C., Yu, G., Zhang, X., Deng, Y., Sun, J.: DetNet: a backbone network for object detection. arXiv preprint arXiv:1804.06215 (2018)

  15. Liang, F., et al.: Computation reallocation for object detection. arXiv preprint arXiv:1912.11234 (2019)

  16. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  17. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  18. Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., Pietikäinen, M.: Deep learning for generic object detection: a survey. Int. J. Comput. Vis. 128(2), 261–318 (2020)

    Article  Google Scholar 

  19. Liu, S., Huang, D., et al.: Receptive field block net for accurate and fast object detection. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 385–400 (2018)

    Google Scholar 

  20. Lu, X., Li, B., Yue, Y., Li, Q., Yan, J.: Grid R-CNN. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7363–7372 (2019)

    Google Scholar 

  21. Luo, W., Li, Y., Urtasun, R., Zemel, R.: Understanding the effective receptive field in deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 4898–4906 (2016)

    Google Scholar 

  22. Ma, X., Liu, S., Xia, Z., Zhang, H., Zeng, X., Ouyang, W.: Rethinking pseudo-lidar representation. In: Proceedings of the European Conference on Computer Vision (ECCV) (2020)

    Google Scholar 

  23. Ma, X., Wang, Z., Li, H., Zhang, P., Ouyang, W., Fan, X.: Accurate monocular 3D object detection via color-embedded 3D reconstruction for autonomous driving. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  24. Mahajan, D., et al.: Exploring the limits of weakly supervised pretraining. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 181–196 (2018)

    Google Scholar 

  25. Manhardt, F., Kehl, W., Gaidon, A.: ROI-10D: monocular lifting of 2D detection to 6D pose and metric shape. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  26. Matan, O., Burges, C.J., LeCun, Y., Denker, J.S.: Multi-digit recognition using a space displacement neural network. In: Advances in Neural Information Processing Systems, pp. 488–495 (1992)

    Google Scholar 

  27. Ouyang, W., Wang, K., Zhu, X., Wang, X.: Chained cascade network for object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1938–1946 (2017)

    Google Scholar 

  28. Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., Lin, D.: Libra R-CNN: towards balanced learning for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 821–830 (2019)

    Google Scholar 

  29. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8024–8035 (2019)

    Google Scholar 

  30. Peng, J., Sun, M., Zhang, Z.X., Tan, T., Yan, J.: Efficient neural architecture transformation search in channel-level for object detection. In: Advances in Neural Information Processing Systems, pp. 14290–14299 (2019)

    Google Scholar 

  31. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  32. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  33. Shen, Z., Liu, Z., Li, J., Jiang, Y.G., Chen, Y., Xue, X.: DSOD: learning deeply supervised object detectors from scratch. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1919–1927 (2017)

    Google Scholar 

  34. Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors with online hard example mining. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 761–769 (2016)

    Google Scholar 

  35. Singh, B., Najibi, M., Davis, L.S.: SNIPER: efficient multi-scale training. In: Advances in Neural Information Processing Systems, pp. 9310–9320 (2018)

    Google Scholar 

  36. Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness of data in deep learning era. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 843–852 (2017)

    Google Scholar 

  37. Szegedy, C., Toshev, A., Erhan, D.: Deep neural networks for object detection. In: Advances in Neural Information Processing Systems, pp. 2553–2561 (2013)

    Google Scholar 

  38. Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection. arXiv preprint arXiv:1911.09070 (2019)

  39. Wu, Y., He, K.: Group normalization. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  40. Xie, Q., Hovy, E., Luong, M.T., Le, Q.V.: Self-training with noisy student improves imagenet classification. arXiv preprint arXiv:1911.04252 (2019)

  41. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)

    Google Scholar 

  42. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMix: regularization strategy to train strong classifiers with localizable features. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  43. Zheng, W.S., Gong, S., Xiang, T.: Quantifying and transferring contextual information in object detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 762–777 (2011)

    Article  Google Scholar 

  44. Zhou, D., et al.: EcoNAS: finding proxies for economical neural architecture search. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11396–11404 (2020)

    Google Scholar 

  45. Zhu, C., He, Y., Savvides, M.: Feature selective anchor-free module for single-shot object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 840–849 (2019)

    Google Scholar 

  46. Zhu, R., Zhang, S., Wang, X., Wen, L., Shi, H., Bo, L., Mei, T.: ScratchDet: training single-shot object detectors from scratch. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2268–2277 (2019)

    Google Scholar 

Download references

Acknowledgement

This work was supported by SenseTime, the Australian Research Council Grant DP200103223, and Australian Medical Research Future Fund MRFAI000085.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanli Ouyang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 842 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, D., Zhou, X., Zhang, H., Yi, S., Ouyang, W. (2020). Cheaper Pre-training Lunch: An Efficient Paradigm for Object Detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12353. Springer, Cham. https://doi.org/10.1007/978-3-030-58598-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58598-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58597-6

  • Online ISBN: 978-3-030-58598-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics