Skip to main content

Global and Local Enhancement Networks for Paired and Unpaired Image Enhancement

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

A novel approach for paired and unpaired image enhancement is proposed in this work. First, we develop global enhancement network (GEN) and local enhancement network (LEN), which can faithfully enhance images. The proposed GEN performs the channel-wise intensity transforms that can be trained easier than the pixel-wise prediction. The proposed LEN refines GEN results based on spatial filtering. Second, we propose different training schemes for paired learning and unpaired learning to train GEN and LEN. Especially, we propose a two-stage training scheme based on generative adversarial networks for unpaired learning. Experimental results demonstrate that the proposed algorithm outperforms the state-of-the-arts in paired and unpaired image enhancement. Notably, the proposed unpaired image enhancement algorithm provides better results than recent state-of-the-art paired image enhancement algorithms. The source codes and trained models are available at https://github.com/hukim1124/GleNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arici, T., Dikbas, S., Altunbasak, Y.: A histogram modification framework and its application for image contrast enhancement. IEEE Trans. Image Process. 18(9), 1921–1935 (2009)

    Article  MathSciNet  Google Scholar 

  2. Bychkovsky, V., Paris, S., Chan, E., Durand, F.: Learning photographic global tonal adjustment with a database of input/output image pairs. In: CVPR (2011)

    Google Scholar 

  3. Cai, B., Xu, X., Guo, K., Jia, K., Hu, B., Tao, D.: A joint intrinsic-extrinsic prior model for retinex. In: ICCV (2017)

    Google Scholar 

  4. Chen, Y.S., Wang, Y.C., Kao, M.H., Chuang, Y.Y.: Deep photo enhancer: unpaired learning for image enhancement from photographs with GANs. In: CVPR (2018)

    Google Scholar 

  5. Deng, Y., Loy, C.C., Tang, X.: Aesthetic-driven image enhancement by adversarial learning. In: ACM MM (2018)

    Google Scholar 

  6. Fu, X., Liao, Y., Zeng, D., Huang, Y., Zhang, X.P., Ding, X.: A probabilistic method for image enhancement with simultaneous illumination and reflectance estimation. IEEE Trans. Image Process. 24(12), 4965–4977 (2015)

    Article  MathSciNet  Google Scholar 

  7. Fu, X., Zeng, D., Huang, Y., Zhang, X.P., Ding, X.: A weighted variational model for simultaneous reflectance and illumination estimation. In: CVPR (2016)

    Google Scholar 

  8. Gharbi, M., Chen, J., Barron, J.T., Hasinoff, S.W., Durand, F.: Deep bilateral learning for real-time image enhancement. ACM Trans. Graph. 36(4), 1–12 (2017)

    Article  Google Scholar 

  9. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. 4th edn. Pearson (2018)

    Google Scholar 

  10. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. In: NeurIPS, pp. 5767–5777 (2017)

    Google Scholar 

  11. Guo, X., Li, Y., Ling, H.: Lime: low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2016)

    Article  MathSciNet  Google Scholar 

  12. Hu, Y., He, H., Xu, C., Wang, B., Lin, S.: Exposure: a white-box photo post-processing framework. ACM Trans. Graph. 37(2), 1–17 (2018)

    Article  Google Scholar 

  13. Jobson, D.J., Rahman, Z.U., Woodell, G.A.: A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 6(7), 965–976 (1997)

    Article  Google Scholar 

  14. Jobson, D.J., Rahman, Z.U., Woodell, G.A.: Properties and performance of a center/surround retinex. IEEE Trans. Image Process. 6(3), 451–462 (1997)

    Article  Google Scholar 

  15. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  16. Kim, J.H., Jang, W.D., Sim, J.Y., Kim, C.S.: Optimized contrast enhancement for real-time image and video dehazing. J. Vis. Commun. Image Represent. 24(3), 410–425 (2013)

    Article  Google Scholar 

  17. Kim, Y.T.: Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans. Consum. Electro. 43(1), 1–8 (1997)

    Article  Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2014)

    Google Scholar 

  19. Kosugi, S., Yamasaki, T.: Unpaired image enhancement featuring reinforcement-learning-controlled image editing software. In: AAAI (2020)

    Google Scholar 

  20. Land, E.H.: The retinex theory of color vision. Sci. Am. 237(6), 108–129 (1977)

    Article  Google Scholar 

  21. Lee, C., Kim, J.H., Lee, C., Kim, C.S.: Optimized brightness compensation and contrast enhancement for transmissive liquid crystal displays. IEEE Trans. Circ. Syst. Video Technol. 24(4), 576–590 (2014)

    Article  MathSciNet  Google Scholar 

  22. Lee, C., Lee, C., Kim, C.S.: Contrast enhancement based on layered difference representation of 2D histograms. IEEE Trans. Image Process. 22(12), 5372–5384 (2013)

    Article  Google Scholar 

  23. Lee, C., Lee, C., Lee, Y.Y., Kim, C.S.: Power-constrained contrast enhancement for emissive displays based on histogram equalization. IEEE Trans. Image Process. 21(1), 80–93 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Lim, J., Heo, M., Lee, C., Kim, C.S.: Contrast enhancement of noisy low-light images based on structure-texture-noise decomposition. J. Vis. Commun. Image. Represent. 45, 107–121 (2017)

    Article  Google Scholar 

  25. Lore, K.G., Akintayo, A., Sarkar, S.: LLNet: a deep autoencoder approach to natural low-light image enhancement. Pattern Recognit. 61, 650–662 (2017)

    Article  Google Scholar 

  26. Park, J., Lee, J.Y., Yoo, D., Kweon, I.S.: Distort-and-recover: color enhancement using deep reinforcement learning. In: CVPR (2018)

    Google Scholar 

  27. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  28. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  29. Stark, J.A.: Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans. Image Process. 9(5), 889–896 (2000)

    Article  Google Scholar 

  30. Wang, R., Zhang, Q., Fu, C.W., Shen, X., Zheng, W.S., Jia, J.: Underexposed photo enhancement using deep illumination estimation. In: CVPR (2019)

    Google Scholar 

  31. Wang, S., Zheng, J., Hu, H.M., Li, B.: Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Trans. Image Process. 22(9), 3538–3548 (2013)

    Article  Google Scholar 

  32. Wang, Y., Chen, Q., Zhang, B.: Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans. Consum. Electro. 45(1), 68–75 (1999)

    Article  Google Scholar 

  33. Yan, Z., Zhang, H., Wang, B., Paris, S., Yu, Y.: Automatic photo adjustment using deep neural networks. ACM Trans. Graph. 35(2), 1–15 (2016)

    Article  Google Scholar 

  34. Yu, R., Liu, W., Zhang, Y., Qu, Z., Zhao, D., Zhang, B.: Deepexposure: learning to expose photos with asynchronously reinforced adversarial learning. In: NeurIPS (2018)

    Google Scholar 

  35. Yue, H., Yang, J., Sun, X., Wu, F., Hou, C.: Contrast enhancement based on intrinsic image decomposition. IEEE Trans. Image Process. 26(8), 3981–3994 (2017)

    Article  MathSciNet  Google Scholar 

  36. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2020-2016-0–00464) supervised by the IITP (Institute for Information & communications Technology Promotion), in part by the National Research Foundation of Korea (NRF) through the Korea Government (MSIP) under Grant NRF-2018R1A2B3003896, and in part by the research fund of Chungnam National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Jun Koh .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 29116 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, HU., Koh, Y.J., Kim, CS. (2020). Global and Local Enhancement Networks for Paired and Unpaired Image Enhancement. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12370. Springer, Cham. https://doi.org/10.1007/978-3-030-58595-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58595-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58594-5

  • Online ISBN: 978-3-030-58595-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics