Skip to main content

Faster AutoAugment: Learning Augmentation Strategies Using Backpropagation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12370))

Included in the following conference series:

Abstract

Data augmentation methods are indispensable heuristics to boost the performance of deep neural networks, especially in image recognition tasks. Recently, several studies have shown that augmentation strategies found by search algorithms outperform hand-made strategies. Such methods employ black-box search algorithms over image transformations with continuous or discrete parameters and require a long time to obtain better strategies. In this paper, we propose a differentiable policy search pipeline for data augmentation, which is much faster than previous methods. We introduce approximate gradients for several transformation operations with discrete parameters as well as a differentiable mechanism for selecting operations. As the objective of training, we minimize the distance between the distributions of augmented and original data, which can be differentiated. We show that our method, Faster AutoAugment, achieves significantly faster searching than prior methods without a performance drop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that [18] and our study estimated the GPU hours with an NVIDIA V100 GPU while [5] did with an NVIDIA P100 GPU.

  2. 2.

    https://python-pillow.org/.

  3. 3.

    https://github.com/kakaobrain/fast-autoaugment/tree/master/FastAutoAugment/networks.

  4. 4.

    [5] reported better baseline and Cutout performance than us (18.8% and 16.5% respectively), but we could not reproduce the results in [5].

References

  1. Antoniou, A., Storkey, A., Edwards, H.: Data augmentation generative adversarial networks. In: ICLR (2018)

    Google Scholar 

  2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. In: ICML (2017)

    Google Scholar 

  3. Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv (2013)

    Google Scholar 

  4. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.: MixMatch: a holistic approach to semi-supervised learning. In: NeurIPS (2019)

    Google Scholar 

  5. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: AutoAugment: learning augmentation policies from data. In: CVPR (2019)

    Google Scholar 

  6. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv (2017)

    Google Scholar 

  7. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML (2017)

    Google Scholar 

  8. Gastaldi, X.: Shake-shake regularization of 3-branch residual networks. In: ICLR (2017)

    Google Scholar 

  9. Goodfellow, I., et al.: Generative adversarial networks. In: NIPS (2014)

    Google Scholar 

  10. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of wasserstein GANs. In: NIPS (2017)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  12. Ho, D., Liang, E., Stoica, I., Abbeel, P., Chen, X.: Population based augmentation: efficient learning of augmentation policy schedules. In: ICML (2019)

    Google Scholar 

  13. Inoue, H.: Data augmentation by pairing samples for images classification. arXiv (2018)

    Google Scholar 

  14. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. In: ICLR (2017)

    Google Scholar 

  15. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  16. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical report (2009)

    Google Scholar 

  17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS (2012)

    Google Scholar 

  18. Lim, S., Kim, I., Kim, T., Kim, C., Kim, S.: Fast autoaugment. In: NeurIPS (2019)

    Google Scholar 

  19. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In: ICLR (2018)

    Google Scholar 

  20. Maclaurin, D., Duvenaud, D., Adams, R.: Gradient-based hyperparameter optimization through reversible learning. In: Bach, F., Blei, D. (eds.) ICML (2015)

    Google Scholar 

  21. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning (2011)

    Google Scholar 

  22. van den Oord, A., Vinyals, O., Kavukcuoglu, K.: Neural discrete representation learning. In: NIPS (2017)

    Google Scholar 

  23. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: NeurIPS (2019)

    Google Scholar 

  24. Ratner, A.J., Ehrenberg, H.R., Hussain, Z., Dunnmon, J., Ré, C.: Learning to compose domain-specific transformations for data augmentation. In: NIPS (2017)

    Google Scholar 

  25. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. In: AAAI (2019)

    Google Scholar 

  26. Riba, E., Mishkin, D., Ponsa, D., Rublee, E., Bradski, G.: Kornia: an open source differentiable computer vision library for PyTorch. In: WACV (2019)

    Google Scholar 

  27. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  28. Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., Webb, R.: Learning from simulated and unsupervised images through adversarial training. In: CVPR (2017)

    Google Scholar 

  29. Sixt, L., Wild, B., Landgraf, T.: RenderGAN: generating realistic labeled data. In: Frontiers Robotics AI (2018)

    Google Scholar 

  30. Tokozume, Y., Ushiku, Y., Harada, T.: Between-class Learning for image classification. In: CVPR (2018)

    Google Scholar 

  31. Tran, T., Pham, T., Carneiro, G., Palmer, L., Reid, I.: A bayesian data augmentation approach for learning deep models. In: NIPS (2017)

    Google Scholar 

  32. Volpi, R., Murino, V.: Addressing model vulnerability to distributional shifts over image transformation sets. In: ICCV (2019)

    Google Scholar 

  33. Xie, Q., Dai, Z., Hovy, E., Luong, M.T., Le, Q.V.: Unsupervised data augmentation. arXiv (2019)

    Google Scholar 

  34. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMIx: regularization strategy to train strong classifiers with localizable features. In: ICCV (2019)

    Google Scholar 

  35. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: BMVC (2016)

    Google Scholar 

  36. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: ICLR (2018)

    Google Scholar 

  37. Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. arXiv (2017)

    Google Scholar 

  38. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: ICLR (2017)

    Google Scholar 

Download references

Acknowledgement

The research results were achieved as a part of the “Research and Development of Deep Learning Technology for Advanced Multilingual Speech Translation”, the Commissioned Research of the National Institute of Information and Communications Technology, JAPAN. This work was also supported by JSPS KAKENHI Grant Numbers JP19H04166, JP19K22861 and JP20H04251. We used the RAIDEN system for the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuichiro Hataya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hataya, R., Zdenek, J., Yoshizoe, K., Nakayama, H. (2020). Faster AutoAugment: Learning Augmentation Strategies Using Backpropagation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12370. Springer, Cham. https://doi.org/10.1007/978-3-030-58595-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58595-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58594-5

  • Online ISBN: 978-3-030-58595-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics