Skip to main content

PointTriNet: Learned Triangulation of 3D Point Sets

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12368))

Included in the following conference series:

Abstract

This work considers a new task in geometric deep learning: generating a triangulation among a set of points in 3D space. We present PointTriNet, a differentiable and scalable approach enabling point set triangulation as a layer in 3D learning pipelines. The method iteratively applies two neural networks: a classification network predicts whether a candidate triangle should appear in the triangulation, while a proposal network suggests additional candidates. Both networks are structured as PointNets over nearby points and triangles, using a novel triangle-relative input encoding. Since these learning problems operate on local geometric data, our method is efficient and scalable, and generalizes to unseen shape categories. Our networks are trained in an unsupervised manner from a collection of shapes represented as point clouds. We demonstrate the effectiveness of this approach for classical meshing tasks, robustness to outliers, and as a component in end-to-end learning systems.

Code is available at github.com/nmwsharp/learned-triangulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations and generative models for 3D point clouds. arXiv preprint arXiv:1707.02392 (2017)

  2. Amenta, N., Bern, M.: Surface reconstruction by Voronoi filtering. Discrete Comput. Geom. 22(4), 481–504 (1999)

    Article  MathSciNet  Google Scholar 

  3. Amenta, N., Bern, M., Kamvysselis, M.: A new Voronoi-based surface reconstruction algorithm. In: Proceedings of the SIGGRAPH, pp. 415–421 (1998)

    Google Scholar 

  4. Amenta, N., Choi, S., Kolluri, R.K.: The power crust, unions of balls, and the medial axis transform. Comput. Geom. 19(2–3), 127–153 (2001)

    Article  MathSciNet  Google Scholar 

  5. Barequet, G., Dickerson, M., Eppstein, D.: On triangulating three-dimensional polygons. Comput. Geom. 10(3), 155–170 (1998)

    Article  MathSciNet  Google Scholar 

  6. Berger, M., et al.: A survey of surface reconstruction from point clouds. In: Computer Graphics Forum, vol. 36, pp. 301–329. Wiley Online Library (2017)

    Google Scholar 

  7. Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., Taubin, G.: The ball-pivoting algorithm for surface reconstruction. IEEE Trans. Visual. Comput. Graph. 5(4), 349–359 (1999)

    Article  Google Scholar 

  8. Biedl, T., Durocher, S., Snoeyink, J.: Reconstructing polygons from scanner data. Theoret. Comput. Sci. 412(32), 4161–4172 (2011)

    Article  MathSciNet  Google Scholar 

  9. Boissonnat, J.D.: Geometric structures for three-dimensional shape representation. ACM Trans. Graph. (TOG) 3(4), 266–286 (1984)

    Article  Google Scholar 

  10. Boissonnat, J.D., Oudot, S.: Provably good sampling and meshing of surfaces. Graph. Models 67(5), 405–451 (2005)

    Article  Google Scholar 

  11. Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. arXiv preprint arXiv:1512.03012 (2015)

  12. Chen, Z., Tagliasacchi, A., Zhang, H.: BSP-Net: generating compact meshes via binary space partitioning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 45–54 (2020)

    Google Scholar 

  13. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5939–5948 (2019)

    Google Scholar 

  14. Crane, K., Weischedel, C., Wardetzky, M.: The heat method for distance computation. Commun. ACM 60(11), 90–99 (2017)

    Article  Google Scholar 

  15. Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 303–312. In: Proceedings of SIGGRAPH (1996)

    Google Scholar 

  16. Dai, A., Nießner, M.: Scan2Mesh: from unstructured range scans to 3D meshes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5574–5583 (2019)

    Google Scholar 

  17. Deng, B., Genova, K., Yazdani, S., Bouaziz, S., Hinton, G., Tagliasacchi, A.: CvxNet: Learnable convex decomposition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 31–44 (2020)

    Google Scholar 

  18. Dey, T.K.: Curve and Surface Reconstruction: Algorithms with Mathematical Analysis, vol. 23. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  19. Edelsbrunner, H., Mücke, E.P.: Three-dimensional alpha shapes. ACM Trans. Graph. (TOG) 13(1), 43–72 (1994)

    Article  Google Scholar 

  20. Genova, K., Cole, F., Vlasic, D., Sarna, A., Freeman, W.T., Funkhouser, T.: Learning shape templates with structured implicit functions. arXiv preprint arXiv:1904.06447 (2019)

  21. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  22. Gkioxari, G., Malik, J., Johnson, J.: Mesh R-CNN. arXiv preprint arXiv:1906.02739 (2019)

  23. Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: A papier-mâché approach to learning 3D surface generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 216–224 (2018)

    Google Scholar 

  24. Hackel, T., Savinov, N., Ladicky, L., Wegner, J.D., Schindler, K., Pollefeys, M.: Semantic3d. net: a new large-scale point cloud classification benchmark. arXiv preprint arXiv:1704.03847 (2017)

  25. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points, vol. 26. ACM (1992)

    Google Scholar 

  26. Kanazawa, A., Tulsiani, S., Efros, A.A., Malik, J.: Learning category-specific mesh reconstruction from image collections. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 386–402. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_23

    Chapter  Google Scholar 

  27. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, vol. 7 (2006)

    Google Scholar 

  28. Kazhdan, M., Hoppe, H.: Screened poisson surface reconstruction. ACM Transactions on Graphics (ToG) 32(3), 1–13 (2013)

    Article  Google Scholar 

  29. Khatamian, A., Arabnia, H.R.: Survey on 3D surface reconstruction. J. Inf. Process. Syst. 12(3), 338–357 (2016)

    Google Scholar 

  30. Kolluri, R., Shewchuk, J.R., O’Brien, J.F.: Spectral surface reconstruction from noisy point clouds. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 11–21. ACM (2004)

    Google Scholar 

  31. Liao, Y., Donne, S., Geiger, A.: Deep marching cubes: learning explicit surface representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2916–2925 (2018)

    Google Scholar 

  32. Lin, C.H., et al.: Photometric mesh optimization for video-aligned 3D object reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 969–978 (2019)

    Google Scholar 

  33. Lipman, Y., Sorkine, O., Cohen-Or, D., Levin, D., Rossi, C., Seidel, H.P.: Differential coordinates for interactive mesh editing. In: Proceedings Shape Modeling Applications, 2004, pp. 181–190. IEEE (2004)

    Google Scholar 

  34. Litany, O., Bronstein, A., Bronstein, M., Makadia, A.: Deformable shape completion with graph convolutional autoencoders. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1886–1895 (2018)

    Google Scholar 

  35. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: Learning 3D reconstruction in function space. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4460–4470 (2019)

    Google Scholar 

  36. Mullen, P., De Goes, F., Desbrun, M., Cohen-Steiner, D., Alliez, P.: Signing the unsigned: Robust surface reconstruction from raw pointsets. In: Computer Graphics Forum, vol. 29, pp. 1733–1741. Wiley Online Library (2010)

    Google Scholar 

  37. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML 2010), pp. 807–814 (2010)

    Google Scholar 

  38. Newman, T.S., Yi, H.: A survey of the marching cubes algorithm. Comput. Graph. 30(5), 854–879 (2006)

    Article  Google Scholar 

  39. Pan, J., Han, X., Chen, W., Tang, J., Jia, K.: Deep mesh reconstruction from single RGB images via topology modification networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9964–9973 (2019)

    Google Scholar 

  40. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 165–174 (2019)

    Google Scholar 

  41. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  42. Rakotosaona, M.J., La Barbera, V., Guerrero, P., Mitra, N.J., Ovsjanikov, M.: Pointcleannet: learning to denoise and remove outliers from dense point clouds. In: Computer Graphics Forum. Wiley Online Library (2019)

    Google Scholar 

  43. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  44. Shewchuk, J., Dey, T.K., Cheng, S.W.: Delaunay Mesh Generation. Chapman and Hall/CRC, Boca Raton (2016)

    MATH  Google Scholar 

  45. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Treece, G.M., Prager, R.W., Gee, A.H.: Regularised marching tetrahedra: improved ISO-surface extraction. Comput. Graph. 23(4), 583–598 (1999)

    Article  Google Scholar 

  47. Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.G.: Pixel2Mesh: Generating 3D mesh models from single RGB images. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 52–67 (2018)

    Google Scholar 

  48. Williams, F., Schneider, T., Silva, C., Zorin, D., Bruna, J., Panozzo, D.: Deep geometric prior for surface reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10130–10139 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Marie-Julie Rakotosaona and Keenan Crane for fruitful initial discussions, and to Angela Dai for assistance comparing with Scan2Mesh. Parts of this work were supported by an NSF Graduate Research Fellowship, the KAUST OSR Award No. CRG-2017-3426 and the ERC Starting Grant No. 758800 (EXPROTEA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Sharp .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 6446 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharp, N., Ovsjanikov, M. (2020). PointTriNet: Learned Triangulation of 3D Point Sets. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12368. Springer, Cham. https://doi.org/10.1007/978-3-030-58592-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58592-1_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58591-4

  • Online ISBN: 978-3-030-58592-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics