Skip to main content

Progressive Refinement Network for Occluded Pedestrian Detection

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12368))

Abstract

We present Progressive Refinement Network (PRNet), a novel single-stage detector that tackles occluded pedestrian detection. Motivated by human’s progressive process on annotating occluded pedestrians, PRNet achieves sequential refinement by three phases: Finding high-confident anchors of visible parts, calibrating such anchors to a full-body template derived from occlusion statistics, and then adjusting the calibrated anchors to final full-body regions. Unlike conventional methods that exploit predefined anchors, the confidence-aware calibration offers adaptive anchor initialization for detection with occlusions, and helps reduce the gap between visible-part and full-body detection. In addition, we introduce an occlusion loss to up-weigh hard examples, and a Receptive Field Backfeed (RFB) module to diversify receptive fields in early layers that commonly fire only on visible parts or small-size full-body regions. Experiments were performed within and across CityPersons, ETH, and Caltech datasets. Results show that PRNet can match the speed of existing single-stage detectors, consistently outperforms alternatives in terms of overall miss rate, and offers significantly better cross-dataset generalization. Code is available (https://github.com/sxlpris).

X. Song and K. Zhao—These authors contributed equally.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://bitbucket.org/shanshanzhang/citypersons/.

References

  1. Brazil, G., Liu, X.: Pedestrian detection with autoregressive network phases. In: CVPR (2019)

    Google Scholar 

  2. Brazil, G., Yin, X., Liu, X.: Illuminating pedestrians via simultaneous detection & segmentation. In: ICCV (2017)

    Google Scholar 

  3. Chi, C., Zhang, S., Xing, J., Lei, Z., Li, S.Z., Zou, X.: Selective refinement network for high performance face detection. In: AAAI (2019)

    Google Scholar 

  4. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.-F.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  5. Dollár, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: an evaluation of the state of the art. TPAMI 34 (2012)

    Google Scholar 

  6. Duan, G., Ai, H., Lao, S.: A structural filter approach to human detection. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 238–251. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15567-3_18

    Chapter  Google Scholar 

  7. Enzweiler, M., Eigenstetter, A., Schiele, B., Gavrila, D.M.: Multi-cue pedestrian classification with partial occlusion handling. In: CVPR (2010)

    Google Scholar 

  8. Ess, A., Leibe, B., Van Gool, L.: Depth and appearance for mobile scene analysis. In: ICCV (2007)

    Google Scholar 

  9. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the kitti dataset. Int. J. Robot. Res. 32 (2013)

    Google Scholar 

  10. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The kitti vision benchmark suite. In: CVPR (2012)

    Google Scholar 

  11. Girshick, R.: Fast R-CNN. In: ICCV (2015)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  13. Li, J., Liang, X., Shen, S., Xu, T., Feng, J., Yan, S.: Scale-aware fast R-CNN for pedestrian detection. TMM 20 (2018)

    Google Scholar 

  14. Lin, C., Lu, J., Wang, G., Zhou, J.: Graininess-aware deep feature learning for pedestrian detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 745–761. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_45

    Chapter  Google Scholar 

  15. Lin, T., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In: CVPR (2017)

    Google Scholar 

  16. Liu, S., Huang, D., Wang, Y.: Adaptive NMS: refining pedestrian detection in a crowd. In: CVPR (2019)

    Google Scholar 

  17. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  18. Liu, W., Liao, S., Hu, W., Liang, X., Chen, X.: Learning efficient single-stage pedestrian detectors by asymptotic localization fitting. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 643–659. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_38

    Chapter  Google Scholar 

  19. Liu, W., Liao, S., Ren, W., Hu, W., Yu, Y.: High-level semantic feature detection: a new perspective for pedestrian detection. In: CVPR (2019)

    Google Scholar 

  20. Mathias, M., Benenson, R., Timofte, R., Gool, L.V.: Handling occlusions with Franken-classifiers. In: ICCV (2013)

    Google Scholar 

  21. Nascimento, J.C., Marques, J.S.: Performance evaluation of object detection algorithms for video surveillance. TMM 8 (2006)

    Google Scholar 

  22. Noh, J., Lee, S., Kim, B., Kim, G.: Improving occlusion and hard negative handling for single-stage pedestrian detectors. In: CVPR (2018)

    Google Scholar 

  23. Ouyang, W., Wang, X.: A discriminative deep model for pedestrian detection with occlusion handling. In: CVPR (2012)

    Google Scholar 

  24. Ouyang, W., Wang, X.: Joint deep learning for pedestrian detection. In: ICCV (2013)

    Google Scholar 

  25. Ouyang, W., Zeng, X., Wang, X.: Modeling mutual visibility relationship in pedestrian detection. In: CVPR (2013)

    Google Scholar 

  26. Ouyang, W., Wang, X.: Single-pedestrian detection aided by multi-pedestrian detection. In: CVPR (2013)

    Google Scholar 

  27. Pang, Y., Xie, J., Khan, M.H., Anwer, R.M., Khan, F.S., Shao, L.: Mask-guided attention network for occluded pedestrian detection. In: ICCV (2019)

    Google Scholar 

  28. Pepikj, B., Stark, M., Gehler, P., Schiele, B.: Occlusion patterns for object class detection. In: CVPR (2013)

    Google Scholar 

  29. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS (2015)

    Google Scholar 

  30. Shet, V.D., Neumann, J., Ramesh, V., Davis, L.S.: Bilattice-based logical reasoning for human detection. In: CVPR (2007)

    Google Scholar 

  31. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv:1312.6034 (2013)

  32. Song, T., Sun, L., Xie, D., Sun, H., Pu, S.: Small-scale pedestrian detection based on topological line localization and temporal feature aggregation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 554–569. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_33

    Chapter  Google Scholar 

  33. Tang, S., Andriluka, M., Schiele, B.: Detection and tracking of occluded people. IJCV 110 (2014)

    Google Scholar 

  34. Tian, Y., Luo, P., Wang, X., Tang, X.: Deep learning strong parts for pedestrian detection. In: ICCV (2015)

    Google Scholar 

  35. Wang, X., Xiao, T., Jiang, Y., Shao, S., Sun, J., Shen, C.: Repulsion loss: detecting pedestrians in a crowd. In: CVPR (2018)

    Google Scholar 

  36. Wu, B., Nevatia, R.: Detection of multiple, partially occluded humans in a single image by Bayesian combination of edgelet part detectors. In: ICCV (2005)

    Google Scholar 

  37. Zhang, L., Lin, L., Liang, X., He, K.: Is faster R-CNN doing well for pedestrian detection? In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 443–457. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_28

    Chapter  Google Scholar 

  38. Zhang, S., Benenson, R., Omran, M., Hosang, J., Schiele, B.: How far are we from solving pedestrian detection? In: CVPR (2016)

    Google Scholar 

  39. Zhang, S., Benenson, R., Schiele, B.: Citypersons: a diverse dataset for pedestrian detection. In: CVPR (2017)

    Google Scholar 

  40. Zhang, S., Yang, J., Schiele, B.: Occluded pedestrian detection through guided attention in CNNs. In: CVPR (2018)

    Google Scholar 

  41. Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z.: Occlusion-aware R-CNN: detecting pedestrians in a crowd. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 657–674. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_39

    Chapter  Google Scholar 

  42. Zhou, C., Yang, M., Yuan, J.: Discriminative feature transformation for occluded pedestrian detection. In: ICCV (2019)

    Google Scholar 

  43. Zhou, C., Yuan, J.: Multi-label learning of part detectors for heavily occluded pedestrian detection. In: ICCV (2017)

    Google Scholar 

  44. Zhou, C., Yuan, J.: Bi-box regression for pedestrian detection and occlusion estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 138–154. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_9

    Chapter  Google Scholar 

Download references

Acknowledgement

Research reported in this paper was supported in part by the Natural Science Foundation of China under grant 61701032 & 62076036 to KZ, and Beijing Municiple Science and Technology Commission project under Grant No.Z181100001918005 to XS and HZ. We thank Jayakorn Vongkulbhisal for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaili Zhao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 14786 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, X., Zhao, K., Chu, WS., Zhang, H., Guo, J. (2020). Progressive Refinement Network for Occluded Pedestrian Detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12368. Springer, Cham. https://doi.org/10.1007/978-3-030-58592-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58592-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58591-4

  • Online ISBN: 978-3-030-58592-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics