Skip to main content

Square Attack: A Query-Efficient Black-Box Adversarial Attack via Random Search

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12368))

Included in the following conference series:

Abstract

We propose the Square Attack, a score-based black-box \(l_2\)- and \(l_\infty \)-adversarial attack that does not rely on local gradient information and thus is not affected by gradient masking. Square Attack is based on a randomized search scheme which selects localized square-shaped updates at random positions so that at each iteration the perturbation is situated approximately at the boundary of the feasible set. Our method is significantly more query efficient and achieves a higher success rate compared to the state-of-the-art methods, especially in the untargeted setting. In particular, on ImageNet we improve the average query efficiency in the untargeted setting for various deep networks by a factor of at least 1.8 and up to 3 compared to the recent state-of-the-art \(l_\infty \)-attack of Al-Dujaili & O’Reilly (2020). Moreover, although our attack is black-box, it can also outperform gradient-based white-box attacks on the standard benchmarks achieving a new state-of-the-art in terms of the success rate. The code of our attack is available at https://github.com/max-andr/square-attack.

M. Andriushchenko and F. Croce—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is an iterative procedure different from random sampling inside the feasible region.

  2. 2.

    Nonconvex constrained optimization under noisy oracles is notoriously harder  [19].

References

  1. Akhtar, N., Mian, A.: Threat of adversarial attacks on deep learning in computer vision: a survey. IEEE Access 6, 14410–14430 (2018)

    Article  Google Scholar 

  2. Al-Dujaili, A., O’Reilly, U.M.: There are no bit parts for sign bits in black-box attacks. In: ICLR (2020)

    Google Scholar 

  3. Alzantot, M., Sharma, Y., Chakraborty, S., Srivastava, M.: GenAttack: practical black-box attacks with gradient-free optimization. In: Genetic and Evolutionary Computation Conference (GECCO) (2019)

    Google Scholar 

  4. Athalye, A., Carlini, N., Wagner, D.A.: Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples. In: ICML (2018)

    Google Scholar 

  5. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., Criminisi, A.: Measuring neural net robustness with constraints. In: NeurIPS (2016)

    Google Scholar 

  6. Bhagoji, A.N., He, W., Li, B., Song, D.: Practical black-box attacks on deep neural networks using efficient query mechanisms. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 158–174. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_10

    Chapter  Google Scholar 

  7. Biggio, B., Roli, F.: Wild patterns: ten years after the rise of adversarial machine learning. Pattern Recogn. 84, 317–331 (2018)

    Article  Google Scholar 

  8. Brendel, W., Rauber, J., Bethge, M.: Decision-based adversarial attacks: reliable attacks against black-box machine learning models. In: ICLR (2018)

    Google Scholar 

  9. Brunner, T., Diehl, F., Le, M.T., Knoll, A.: Guessing smart: biased sampling for efficient black-box adversarial attacks. In: ICCV (2019)

    Google Scholar 

  10. Carlini, N., Wagner, D.: Adversarial examples are not easily detected: bypassing ten detection methods. In: ACM Workshop on Artificial Intelligence and Security (2017)

    Google Scholar 

  11. Chen, J., Jordan, M.I., J., W.M.: HopSkipJumpAttack: a query-efficient decision-based attack (2019). arXiv preprint arXiv:1904.02144

  12. Chen, P., Sharma, Y., Zhang, H., Yi, J., Hsieh, C.: EAD: elastic-net attacks to deep neural networks via adversarial examples. In: AAAI (2018)

    Google Scholar 

  13. Chen, P.Y., Zhang, H., Sharma, Y., Yi, J., Hsieh, C.J.: ZOO: zeroth order optimization based black-box attacks to deep neural networks without training substitute models. In: 10th ACM Workshop on Artificial Intelligence and Security - AISec 2017. ACM Press (2017)

    Google Scholar 

  14. Cheng, M., Le, T., Chen, P.Y., Yi, J., Zhang, H., Hsieh, C.J.: Query-efficient hard-label black-box attack: an optimization-based approach. In: ICLR (2019)

    Google Scholar 

  15. Cheng, S., Dong, Y., Pang, T., Su, H., Zhu, J.: Improving black-box adversarial attacks with a transfer-based prior. In: NeurIPS (2019)

    Google Scholar 

  16. Croce, F., Hein, M.: Sparse and imperceivable adversarial attacks. In: ICCV (2019)

    Google Scholar 

  17. Croce, F., Hein, M.: Minimally distorted adversarial examples with a fast adaptive boundary attack. In: ICML (2020)

    Google Scholar 

  18. Croce, F., Hein, M.: Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. In: ICML (2020)

    Google Scholar 

  19. Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM J. Optim. 29(1), 207–239 (2019)

    Article  MathSciNet  Google Scholar 

  20. Du, J., Zhang, H., Zhou, J.T., Yang, Y., Feng, J.: Query-efficient meta attack to deep neural networks. In: ICLR (2020)

    Google Scholar 

  21. Duchi, J., Jordan, M., Wainwright, M., Wibisono, A.: Optimal rates for zero-order convex optimization: the power of two function evaluations. IEEE Trans. Inf. Theory 61(5), 2788–2806 (2015)

    Article  MathSciNet  Google Scholar 

  22. Fawzi, A., Frossard, P.: Measuring the effect of nuisance variables on classifiers. In: British Machine Vision Conference (BMVC) (2016)

    Google Scholar 

  23. Gu, S., Rigazio, L.: Towards deep neural network architectures robust to adversarial examples. In: ICLR Workshop (2015)

    Google Scholar 

  24. Guo, C., Frank, J.S., Weinberger, K.Q.: Low frequency adversarial perturbation. In: UAI (2019)

    Google Scholar 

  25. Guo, C., Gardner, J.R., You, Y., Wilson, A.G., Weinberger, K.Q.: Simple black-box adversarial attacks. In: ICML (2019)

    Google Scholar 

  26. Haagerup, U.: The best constants in the Khintchine inequality. Studia Math. 70(3), 231–283 (1981)

    Article  MathSciNet  Google Scholar 

  27. Ilyas, A., Engstrom, L., Athalye, A., Lin, J.: Black-box adversarial attacks with limited queries and information. In: ICML (2018)

    Google Scholar 

  28. Ilyas, A., Engstrom, L., Madry, A.: Prior convictions: black-box adversarial attacks with bandits and priors. In: ICLR (2019)

    Google Scholar 

  29. Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B., Madry, A.: Adversarial examples are not bugs, they are features. In: NeurIPS (2019)

    Google Scholar 

  30. Kannan, H., Kurakin, A., Goodfellow, I.: Adversarial logit pairing (2018). arXiv preprint arXiv:1803.06373

  31. Li, Y., Li, L., Wang, L., Zhang, T., Gong, B.: NATTACK: learning the distributions of adversarial examples for an improved black-box attack on deep neural networks. In: ICML (2019)

    Google Scholar 

  32. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: ICLR (2018)

    Google Scholar 

  33. Matyas, J.: Random optimization. Autom. Remote Control 26(2), 246–253 (1965)

    MathSciNet  MATH  Google Scholar 

  34. Meunier, L., Atif, J., Teytaud, O.: Yet another but more efficient black-box adversarial attack: tiling and evolution strategies (2019). arXiv preprint, arXiv:1910.02244

  35. Mosbach, M., Andriushchenko, M., Trost, T., Hein, M., Klakow, D.: Logit pairing methods can fool gradient-based attacks. In: NeurIPS 2018 Workshop on Security in Machine Learning (2018)

    Google Scholar 

  36. Narodytska, N., Kasiviswanathan, S.: Simple black-box adversarial attacks on deep neural networks. In: CVPR Workshops (2017)

    Google Scholar 

  37. Nemirovsky, A.S., Yudin, D.B.: Problem Complexity and Method Efficiency in Optimization. Wiley-Interscience Series in Discrete Mathematics. Wiley, Hoboken (1983)

    Google Scholar 

  38. Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Found. Comput. Math. 17(2), 527–566 (2017). https://doi.org/10.1007/s10208-015-9296-2

    Article  MathSciNet  MATH  Google Scholar 

  39. Papernot, N., McDaniel, P., Goodfellow, I.: Transferability in machine learning: from phenomena to black-box attacks using adversarial samples (2016). arXiv preprint arXiv:1605.07277

  40. Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A.: Distillation as a defense to adversarial perturbations against deep networks. In: IEEE Symposium on Security & Privacy (2016)

    Google Scholar 

  41. Rastrigin, L.: The convergence of the random search method in the extremal control of a many parameter system. Autom. Remote Control 24, 1337–1342 (1963)

    Google Scholar 

  42. Schrack, G., Choit, M.: Optimized relative step size random searches. Math. Program. 10, 230–244 (1976). https://doi.org/10.1007/BF01580669

    Article  MathSciNet  MATH  Google Scholar 

  43. Schumer, M., Steiglitz, K.: Adaptive step size random search. IEEE Trans. Automat. Control 13(3), 270–276 (1968)

    Article  Google Scholar 

  44. Seungyong, M., Gaon, A., Hyun, O.S.: Parsimonious black-box adversarial attacks via efficient combinatorial optimization. In: ICML (2019)

    Google Scholar 

  45. Shukla, S.N., Sahu, A.K., Willmott, D., Kolter, Z.: Black-box adversarial attacks with Bayesian optimization (2019). arXiv preprint arXiv:1909.13857

  46. Su, J., Vargas, D., Sakurai, K.: One pixel attack for fooling deep neural networks. IEEE Trans. Evol. Comput. 23, 828–841 (2019)

    Article  Google Scholar 

  47. Suya, F., Chi, J., Evans, D., Tian, Y.: Hybrid batch attacks: finding black-box adversarial examples with limited queries (2019). arXiv preprint, arXiv:1908.07000

  48. Tramèr, F., Boneh, D.: Adversarial training and robustness for multiple perturbations. In: NeurIPS (2019)

    Google Scholar 

  49. Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., Madry, A.: Robustness may be at odds with accuracy. In: ICLR (2019)

    Google Scholar 

  50. Tu, C.C., et al.: Autozoom: autoencoder-based zeroth order optimization method for attacking black-box neural networks. In: AAAI Conference on Artificial Intelligence (2019)

    Google Scholar 

  51. Uesato, J., O’Donoghue, B., Van den Oord, A., Kohli, P.: Adversarial risk and the dangers of evaluating against weak attacks. In: ICML (2018)

    Google Scholar 

  52. Yan, Z., Guo, Y., Zhang, C.: Subspace attack: exploiting promising subspaces for query-efficient black-box attacks. In: NeurIPS (2019)

    Google Scholar 

  53. Yin, D., Lopes, R.G., Shlens, J., Cubuk, E.D., Gilmer, J.: A Fourier perspective on model robustness in computer vision. In: NeurIPS (2019)

    Google Scholar 

  54. Zabinsky, Z.B.: Random search algorithms. In: Wiley Encyclopedia of Operations Research and Management Science (2010)

    Google Scholar 

  55. Zhang, H., Yu, Y., Jiao, J., Xing, E.P., Ghaoui, L.E., Jordan, M.I.: Theoretically principled trade-off between robustness and accuracy. In: ICML (2019)

    Google Scholar 

  56. Zheng, S., Song, Y., Leung, T., Goodfellow, I.J.: Improving the robustness of deep neural networks via stability training. In: CVPR (2016)

    Google Scholar 

  57. Zheng, T., Chen, C., Ren, K.: Distributionally adversarial attack. In: AAAI (2019)

    Google Scholar 

Download references

Acknowledgements

We thank L. Meunier and S. N. Shukla for providing the data for Fig. 6. M.A. thanks A. Modas for fruitful discussions. M.H and F.C. acknowledge support by the Tue.AI Center (FKZ: 01IS18039A), DFG TRR 248, project number 389792660 and DFG EXC 2064/1, project number 390727645.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksym Andriushchenko .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2921 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andriushchenko, M., Croce, F., Flammarion, N., Hein, M. (2020). Square Attack: A Query-Efficient Black-Box Adversarial Attack via Random Search. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12368. Springer, Cham. https://doi.org/10.1007/978-3-030-58592-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58592-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58591-4

  • Online ISBN: 978-3-030-58592-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics