Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation (2015)
Google Scholar
Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56
CrossRef
Google Scholar
Chang, J.R., Chen, Y.S.: Pyramid stereo matching network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5410–5418 (2018)
Google Scholar
Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)
Chen, R., Han, S., Xu, J., Su, H.: Point-based multi-view stereo network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1538–1547 (2019)
Google Scholar
Chen, Z., Badrinarayanan, V., Drozdov, G., Rabinovich, A.: Estimating depth from RGB and sparse sensing. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 167–182 (2018)
Google Scholar
Cheng, X., Wang, P., Yang, R.: Depth estimation via affinity learned with convolutional spatial propagation network. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 103–119 (2018)
Google Scholar
Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet: richly-annotated 3D reconstructions of indoor scenes. In: Proceedings Computer Vision and Pattern Recognition (CVPR). IEEE (2017)
Google Scholar
DeTone, D., Malisiewicz, T., Rabinovich, A.: Superpoint: self-supervised interest point detection and description. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 337–33712, June 2018. https://doi.org/10.1109/CVPRW.2018.00060
Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2650–2658 (2015)
Google Scholar
Fu, H., Gong, M., Wang, C., Batmanghelich, K., Tao, D.: Deep ordinal regression network for monocular depth estimation In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2002–2011 (2018)
Google Scholar
Garg, R., B.G., V.K., Carneiro, G., Reid, I.: Unsupervised CNN for single view depth estimation: geometry to the rescue. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 740–756. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_45
CrossRef
Google Scholar
Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 270–279 (2017)
Google Scholar
Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)
MATH
Google Scholar
He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)
CrossRef
Google Scholar
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Google Scholar
Hou, Y., Kannala, J., Solin, A.: Multi-view stereo by temporal nonparametric fusion. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2651–2660 (2019)
Google Scholar
Huang, P.H., Matzen, K., Kopf, J., Ahuja, N., Huang, J.B.: Deepmvs: learning multi-view stereopsis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2821–2830 (2018)
Google Scholar
Im, S., Jeon, H.G., Lin, S., Kweon, I.S.: DPSNET: End-to-end deep plane sweep stereo. In: 7th International Conference on Learning Representations, ICLR 2019. International Conference on Learning Representations, ICLR (2019)
Google Scholar
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)
Iskakov, K., Burkov, E., Lempitsky, V., Malkov, Y.: Learnable triangulation of human pose. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7718–7727 (2019)
Google Scholar
Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7482–7491 (2018)
Google Scholar
Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7482–7491 (2018)
Google Scholar
Lasinger, K., Ranftl, R., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: mixing datasets for zero-shot cross-dataset transfer. arXiv preprint arXiv:1907.01341 (2019)
Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: Artificial Intelligence and Statistics, pp. 562–570 (2015)
Google Scholar
Lee, J.H., Han, M.K., Ko, D.W., Suh, I.H.: From big to small: multi-scale local planar guidance for monocular depth estimation. arXiv preprint arXiv:1907.10326 (2019)
Liu, Y., Shen, Z., Lin, Z., Peng, S., Bao, H., Zhou, X.: Gift: learning transformation-invariant dense visual descriptors via group CNNs. In: Advances in Neural Information Processing Systems, pp. 6990–7001 (2019)
Google Scholar
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94
CrossRef
Google Scholar
Luo, X., Huang, J., Szeliski, R., Matzen, K., Kopf, J.: Consistent video depth estimation, vol. 39, p. 4 (2020)
Google Scholar
Ma, F., Cavalheiro, G.V., Karaman, S.: Self-supervised sparse-to-dense: Self-supervised depth completion from lidar and monocular camera. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 3288–3295. IEEE (2019)
Google Scholar
Ma, F., Karaman, S.: Sparse-to-dense: Depth prediction from sparse depth samples and a single image (2018)
Google Scholar
Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Rob. 31(5), 1147–1163 (2015)
CrossRef
Google Scholar
Murthy Jatavallabhula, K., Iyer, G., Paull, L.: gradSLAM: dense SLAM meets automatic differentiation. arXiv preprint arXiv:1910.10672 (2019)
Nistér, D., Naroditsky, O., Bergen, J.: Visual odometry. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, vol. 1, p. I. IEEE (2004)
Google Scholar
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)
Google Scholar
Riegler, G., Osman Ulusoy, A., Geiger, A.: Octnet: learning deep 3D representations at high resolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3577–3586 (2017)
Google Scholar
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
CrossRef
Google Scholar
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: 2011 International Conference on Computer Vision, pp. 2564–2571. IEEE (2011)
Google Scholar
Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: Superglue: learning feature matching with graph neural networks. arXiv preprint arXiv:1911.11763 (2019)
Sinha, A., Unmesh, A., Huang, Q., Ramani, K.: Surfnet: generating 3D shape surfaces using deep residual networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6040–6049 (2017)
Google Scholar
Tan, M., Le, Q.V.: Efficientnet: rethinking model scaling for convolutional neural networks. arXiv preprint arXiv:1905.11946 (2019)
Tan, M., Pang, R., Le, Q.V.: Efficientdet: scalable and efficient object detection. arXiv preprint arXiv:1911.09070 (2019)
Ummenhofer, B., et al.: Demon: depth and motion network for learning monocular stereo. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5038–5047 (2017)
Google Scholar
Wang, K., Shen, S.: Mvdepthnet: real-time multiview depth estimation neural network. In: 2018 International Conference on 3D Vision (3DV), pp. 248–257. IEEE (2018)
Google Scholar
Yao, Y., Luo, Z., Li, S., Fang, T., Quan, L.: Mvsnet: depth inference for unstructured multi-view stereo. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 767–783 (2018)
Google Scholar
Yi, K.M., Trulls, E., Lepetit, V., Fua, P.: LIFT: learned invariant feature transform. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 467–483. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_28
CrossRef
Google Scholar
Zhang, Y., Funkhouser, T.: Deep depth completion of a single RGB-D image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 175–185 (2018)
Google Scholar
Zhang, Z.: Microsoft kinect sensor and its effect. IEEE Multimedia 19(2), 4–10 (2012)
CrossRef
Google Scholar