Skip to main content

Piggyback GAN: Efficient Lifelong Learning for Image Conditioned Generation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12366))

Included in the following conference series:

Abstract

Humans accumulate knowledge in a lifelong fashion. Modern deep neural networks, on the other hand, are susceptible to catastrophic forgetting: when adapted to perform new tasks, they often fail to preserve their performance on previously learned tasks. Given a sequence of tasks, a naive approach addressing catastrophic forgetting is to train a separate standalone model for each task, which scales the total number of parameters drastically without efficiently utilizing previous models. In contrast, we propose a parameter efficient framework, Piggyback GAN, which learns the current task by building a set of convolutional and deconvolutional filters that are factorized into filters of the models trained on previous tasks. For the current task, our model achieves high generation quality on par with a standalone model at a lower number of parameters. For previous tasks, our model can also preserve generation quality since the filters for previous tasks are not altered. We validate Piggyback GAN on various image-conditioned generation tasks across different domains, and provide qualitative and quantitative results to show that the proposed approach can address catastrophic forgetting effectively and efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\lambda c^{\ell }_{out}\) could be rounded to the nearest integer. Or \(\lambda \) could be chosen to make \(\lambda c^{\ell }_{out}\) an integer.

References

  1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: Symposium on Operating Systems Design and Implementation (OSDI) (2016)

    Google Scholar 

  2. Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., Tuytelaars, T.: Memory aware synapses: learning what (not) to forget. In: European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  3. Aljundi, R., Chakravarty, P., Tuytelaars, T.: Expert gate: lifelong learning with a network of experts. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  4. Castro, F.M., Marín-Jiménez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-end incremental learning. In: European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  5. Chaudhry, A., Dokania, P.K., Ajanthan, T., Torr, P.H.: Riemannian walk for incremental learning: understanding forgetting and intransigence. In: European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  6. Chaudhry, A., Ranzato, M., Rohrbach, M., Elhoseiny, M.: Efficient lifelong learning with a-gem. In: International Conference on Learning Representations (ICLR) (2019)

    Google Scholar 

  7. Chen, C., Tung, F., Vedula, N., Mori, G.: Constraint-aware deep neural network compression. In: European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  8. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: Stargan: unified generative adversarial networks for multi-domain image-to-image translation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  9. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  10. Denil, M., Shakibi, B., Dinh, L., Ranzato, M., de Freitas, N.: Predicting parameters in deep learning. In: Advances in Neural Information Processing Systems (NeurIPS) (2013)

    Google Scholar 

  11. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  12. He, Y., Liu, P., Wang, Z., Hu, Z., Yang, Y.: Filter pruning via geometric median for deep convolutional neural networks acceleration. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  13. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems (NeurIPS) (2017)

    Google Scholar 

  14. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  15. Jacob, B., et al.: Quantization and training of neural networks for efficient integer-arithmetic-only inference. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  16. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  17. Jung, S., et al.: Learning to quantize deep networks by optimizing quantization intervals with task loss. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  19. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. In: Proceedings of the National Academy of Sciences of the United States of America (2017)

    Google Scholar 

  20. Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2935–2947 (2017)

    Article  Google Scholar 

  21. Liu, S., Johns, E., Davison, A.J.: End-to-end multi-task learning with attention. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  22. Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning. In: Advances in Neural Information Processing Systems (NeurIPS) (2017)

    Google Scholar 

  23. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: Shufflenet v2: practical guidelines for efficient CNN architecture design. In: European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  24. Mallya, A., Davis, D., Lazebnik, S.: Piggyback: adapting a single network to multiple tasks by learning to mask weights. In: European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  25. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: the sequential learning problem. In: Bower, G.H., (eds.) Psychology of Learning and Motivation. Academic Press, Cambridge (1989)

    Google Scholar 

  26. Qiao, S., Lin, Z., Zhang, J., Yuille, A.: Neural rejuvenation: improving deep network training by enhancing computational resource utilization. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  27. Rebuffi, S.A., Bilen, H., Vedaldi, A.: Efficient parameterization of multi-domain deep neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  28. Rusu, A.A., et al.: Progressive neural networks. arXiv:1606.04671 (2016)

  29. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  30. Seff, A., Beatson, A., Suo, D., Liu, H.: Continual learning in generative adversarial nets. In: Advances in Neural Information Processing Systems (NeurIPS) (2017)

    Google Scholar 

  31. Serrà, J., Suris, D., Miron, M., Karatzoglou, A.: Overcoming catastrophic forgetting with hard attention to the task. In: International Conference on Machine Learning (ICML) (2018)

    Google Scholar 

  32. Shmelkov, K., Schmid, C., Alahari, K.: Incremental learning of object detectors without catastrophic forgetting. In: IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  33. Tartaglione, E., Lepsøy, S., Fiandrotti, A., Francini, G.: Learning sparse neural networks via sensitivity-driven regularization. In: Advances in Neural Information Processing Systems (NeurIPS) (2018)

    Google Scholar 

  34. Tung, F., Mori, G.: Similarity-preserving knowledge distillation. In: IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  35. Tyleček, R., Šára, R.: Spatial pattern templates for recognition of objects with regular structure. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS, vol. 8142, pp. 364–374. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40602-7_39

    Chapter  Google Scholar 

  36. Wu, B., et al.: FBNet: hardware-aware efficient convnet design via differentiable neural architecture search. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  37. Wu, C., Herranz, L., Liu, X., Wang, Y., van de Weijer, J., Raducanu, B.: Memory replay gans: learning to generate images from new categories without forgetting. In: Advances in Neural Information Processing Systems (NeurIPS) (2018)

    Google Scholar 

  38. Yang, T.J., et al.: NetAdapt: platform-aware neural network adaptation for mobile applications. In: European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  39. Yu, A., Grauman, K.: Fine-grained visual comparisons with local learning. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  40. Yu, R., et al.: NISP: pruning networks using neuron importance score propagation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  41. Zagoruyko, S., Komodakis, N.: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  42. Zhai, M., Chen, L., Tung, F., He, J., Nawhal, M., Mori, G.: Lifelong gan: continual learning for conditional image generation. In: IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  43. Zhang, D., Yang, J., Ye, D., Hua, G.: LQ-Nets: learned quantization for highly accurate and compact deep neural networks. In: European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  44. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengyao Zhai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhai, M., Chen, L., He, J., Nawhal, M., Tung, F., Mori, G. (2020). Piggyback GAN: Efficient Lifelong Learning for Image Conditioned Generation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12366. Springer, Cham. https://doi.org/10.1007/978-3-030-58589-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58589-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58588-4

  • Online ISBN: 978-3-030-58589-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics