Advertisement

EGDCL: An Adaptive Curriculum Learning Framework for Unbiased Glaucoma Diagnosis

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12366)

Abstract

Today’s computer-aided diagnosis (CAD) model is still far from the clinical practice of glaucoma detection, mainly due to the training bias originating from 1) the normal-abnormal class imbalance and 2) the rare but significant hard samples in fundus images. However, debiasing in CAD is not trivial because existing methods cannot cure the two types of bias to categorize fundus images. In this paper, we propose a novel curriculum learning paradigm (EGDCL) to train an unbiased glaucoma diagnosis model with the adaptive dual-curriculum. Innovatively, the dual-curriculum is designed with the guidance of evidence maps to build a training criterion, which gradually cures the bias in training data. In particular, the dual-curriculum emphasizes unbiased training contributions of data from easy to hard, normal to abnormal, and the dual-curriculum is optimized jointly with model parameters to obtain the optimal solution. In comparison to baselines, EGDCL significantly improves the convergence speed of the training process and obtains the top performance in the test procedure. Experimental results on challenging glaucoma datasets show that our EGDCL delivers unbiased diagnosis (0.9721 of Sensitivity, 0.9707 of Specificity, 0.993 of AUC, 0.966 of F2-score) and outperform the other methods. It endows our EGDCL a great advantage to handle the unbiased CAD in clinical application.

Keywords

Curriculum learning Unbiased diagnosis Sample imbalance Hard sample Computer-aided diagnosis 

References

  1. 1.
    Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: ICML, pp. 41–48. ACM (2009)Google Scholar
  2. 2.
    Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)CrossRefGoogle Scholar
  3. 3.
    Chen, X., Xu, Y., Wong, D.W.K., Wong, T.Y., Liu, J.: Glaucoma detection based on deep convolutional neural network. In: EMBC, pp. 715–718. IEEE (2015)Google Scholar
  4. 4.
    Chen, X., Xu, Y., Yan, S., Wong, D.W.K., Wong, T.Y., Liu, J.: Automatic feature learning for glaucoma detection based on deep learning. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 669–677. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_80CrossRefGoogle Scholar
  5. 5.
    Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on effective number of samples. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9268–9277 (2019)Google Scholar
  6. 6.
    Fu, H., Cheng, J., Xu, Y., Wong, D.W.K., Liu, J., Cao, X.: Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE TMI 37(7), 1597–1605 (2018)Google Scholar
  7. 7.
    Fu, H., et al.: Disc-aware ensemble network for glaucoma screening from fundus image. IEEE TMI 37(11), 2493–2501 (2018)Google Scholar
  8. 8.
    Fumero, F., Alayón, S., Sanchez, J.L., Sigut, J., Gonzalez-Hernandez, M.: Rim-one: an open retinal image database for optic nerve evaluation. In: 2011 24th International Symposium on Computer-based Medical Systems (CBMS), pp. 1–6. IEEE (2011)Google Scholar
  9. 9.
    Gargeya, R., Leng, T.: Automated identification of diabetic retinopathy using deep learning. Ophthalmology 124(7), 962–969 (2017)CrossRefGoogle Scholar
  10. 10.
    Guo, S., et al.: CurriculumNet: weakly supervised learning from large-scale web images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 139–154. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01249-6_9CrossRefGoogle Scholar
  11. 11.
    Haarburger, C., et al.: Multi scale curriculum CNN for context-aware breast MRI malignancy classification (2019)Google Scholar
  12. 12.
    Haleem, M.S., Han, L., Van Hemert, J., Li, B.: Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: a review. CMIG 37(7–8), 581–596 (2013)Google Scholar
  13. 13.
    Jiménez-Sánchez, A., et al.: Medical-based deep curriculum learning for improved fracture classification. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 694–702. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-32226-7_77CrossRefGoogle Scholar
  14. 14.
    Jin, S., et al.: Unsupervised hard example mining from videos for improved object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 316–333. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01261-8_19CrossRefGoogle Scholar
  15. 15.
    Kumar, M.P., Packer, B., Koller, D.: Self-paced learning for latent variable models. In: NeurIPS, pp. 1189–1197 (2010)Google Scholar
  16. 16.
    Li, L., Xu, M., Wang, X., Jiang, L., Liu, H.: Attention based glaucoma detection: a large-scale database and CNN model. In: CVPR, pp. 10571–10580 (2019)Google Scholar
  17. 17.
    Li, Z., He, Y., Keel, S., Meng, W., Chang, R.T., He, M.: Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology 125(8), 1199–1206 (2018)CrossRefGoogle Scholar
  18. 18.
    Liao, W., Zou, B., Zhao, R., Chen, Y., He, Z., Zhou, M.: Clinical interpretable deep learning model for glaucoma diagnosis. IEEE JBHI (2019)Google Scholar
  19. 19.
    Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV, pp. 2980–2988 (2017)Google Scholar
  20. 20.
    Mookiah, M.R.K., Acharya, U.R., Chua, C.K., Lim, C.M., Ng, E., Laude, A.: Computer-aided diagnosis of diabetic retinopathy: a review. Comput. Biol. Med. 43(12), 2136–2155 (2013)CrossRefGoogle Scholar
  21. 21.
    Orlando, J., et al.: Refuge challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Med. Image Anal. 59, 101570 (2020) CrossRefGoogle Scholar
  22. 22.
    Ren, M., Zeng, W., Yang, B., Urtasun, R.: Learning to reweight examples for robust deep learning. In: ICML, pp. 4331–4340 (2018)Google Scholar
  23. 23.
    Sarafianos, N., Xu, X., Kakadiaris, I.A.: Deep imbalanced attribute classification using visual attention aggregation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 708–725. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01252-6_42CrossRefGoogle Scholar
  24. 24.
    Schacknow, P.N., Samples, J.R.: The Glaucoma Book: A Practical, Evidence-based Approach to Patient Care. Springer, New York (2010).  https://doi.org/10.1007/978-0-387-76700-0CrossRefGoogle Scholar
  25. 25.
    Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors with online hard example mining. In: CVPR, pp. 761–769 (2016)Google Scholar
  26. 26.
    Smirnov, E., Melnikov, A., Oleinik, A., Ivanova, E., Kalinovskiy, I., Luckyanets, E.: Hard example mining with auxiliary embeddings. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 37–46 (2018)Google Scholar
  27. 27.
    Tham, Y.C., Li, X., Wong, T.Y., Quigley, H.A., Cheng, C.Y.: Global prevalence of glaucoma and projections of glaucoma burden through 2040 a systematic review and meta-analysis. Ophthalmology 121(11), 2081–2090 (2014)CrossRefGoogle Scholar
  28. 28.
    Zhao, R., Chen, X., Xiyao, L., Zailiang, C., Guo, F., Li, S.: Direct cup-to-disc ratio estimation for glaucoma screening via semi-supervised learning. IEEE JBHI (2019)Google Scholar
  29. 29.
    Zhao, R., Chen, Z., Liu, X., Zou, B., Li, S.: Multi-index optic disc quantification via multitask ensemble learning. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 21–29. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-32239-7_3CrossRefGoogle Scholar
  30. 30.
    Zhao, R., Li, S.: Multi-indices quantification of optic nerve head in fundus image via multitask collaborative learning. Med. Image Anal. 60, 101593 (2020)CrossRefGoogle Scholar
  31. 31.
    Zhao, R., Liao, W., Zou, B., Chen, Z., Li, S.: Weakly-supervised simultaneous evidence identification and segmentation for automated glaucoma diagnosis. In: AAAI, vol. 33, pp. 809–816. AAAI (2019)Google Scholar
  32. 32.
    Zintgraf, L.M., Cohen, T.S., Adel, T., Welling, M.: Visualizing deep neural network decisions: prediction difference analysis. arXiv preprint arXiv:1702.04595 (2017)

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Computer Science, Central South UniversityChangshaChina
  2. 2.Western UniversityLondonCanada

Personalised recommendations