Skip to main content

Learning Discriminative Feature with CRF for Unsupervised Video Object Segmentation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12372))

Abstract

In this paper, we introduce a novel network, called discriminative feature network (DFNet), to address the unsupervised video object segmentation task. To capture the inherent correlation among video frames, we learn discriminative features (D-features) from the input images that reveal feature distribution from a global perspective. The D-features are then used to establish correspondence with all features of test image under conditional random field (CRF) formulation, which is leveraged to enforce consistency between pixels. The experiments verify that DFNet outperforms state-of-the-art methods by a large margin with a mean IoU score of 83.4% and ranks first on the DAVIS-2016 leaderboard while using much fewer parameters and achieving much more efficient performance in the inference phase. We further evaluate DFNet on the FBMS dataset and the video saliency dataset ViSal, reaching a new state-of-the-art. To further demonstrate the generalizability of our framework, DFNet is also applied to the image object co-segmentation task. We perform experiments on a challenging dataset PASCAL-VOC and observe the superiority of DFNet. The thorough experiments verify that DFNet is able to capture and mine the underlying relations of images and discover the common foreground objects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chang, H., Wang, Y.F.: Optimizing the decomposition for multiple foreground cosegmentation. Comput. Vis. Image Underst. 141, 18–27 (2015)

    Article  Google Scholar 

  2. Chen, H., Huang, Y., Nakayama, H.: Semantic aware attention based deep object co-segmentation. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11364, pp. 435–450. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20870-7_27

    Chapter  Google Scholar 

  3. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  4. Cheng, J., Tsai, Y.H., Wang, S., Yang, M.H.: Segflow: joint learning for video object segmentation and optical flow. In: ICCV (2017)

    Google Scholar 

  5. Cheng, M.M., Mitra, N.J., Huang, X., Torr, P.H., Hu, S.M.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37, 569–582 (2014)

    Article  Google Scholar 

  6. Faisal, M., Akhter, I., Ali, M., Hartley, R.: Exploiting geometric constraints on dense trajectories for motion saliency (2019)

    Google Scholar 

  7. Faktor, A., Irani, M.: Co-segmentation by composition. In: ICCV (2013)

    Google Scholar 

  8. Faktor, A., Irani, M.: Video segmentation by non-local consensus voting. In: BMVC (2014)

    Google Scholar 

  9. Fang, Y., Wang, Z., Lin, W., Fang, Z.: Video saliency incorporating spatiotemporal cues and uncertainty weighting. IEEE Trans. Image Process. 23, 3910–3921 (2014)

    Article  MathSciNet  Google Scholar 

  10. Fragkiadaki, K., Zhang, G., Shi, J.: Video segmentation by tracing discontinuities in a trajectory embedding. In: CVPR (2012)

    Google Scholar 

  11. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with LSTM. In: ICANN (2000)

    Google Scholar 

  12. Griffin, B.A., Corso, J.J.: Tukey-inspired video object segmentation. In: IEEE Winter Conference on Applications of Computer Vision (WACV) (2019)

    Google Scholar 

  13. Han, J., Quan, R., Zhang, D., Nie, F.: Robust object co-segmentation using background prior. IEEE Trans. Image Process. 27, 1639–1651 (2018)

    Article  MathSciNet  Google Scholar 

  14. Hati, A., Chaudhuri, S., Velmurugan, R.: Image co-segmentation using maximum common subgraph matching and region co-growing. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 736–752. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_44

    Chapter  Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: ICCV (2015)

    Google Scholar 

  16. Hou, Q., Cheng, M., Hu, X., Borji, A., Tu, Z., Torr, P.H.S.: Deeply supervised salient object detection with short connections. IEEE Trans. Pattern Anal. Mach. Intell. 41, 815–828 (2019)

    Article  Google Scholar 

  17. Hsu, K., Lin, Y., Chuang, Y.: Co-attention CNNs for unsupervised object co-segmentation. In: IJCAI (2018)

    Google Scholar 

  18. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015)

    Google Scholar 

  19. Jain, S.D., Xiong, B., Grauman, K.: Fusionseg: learning to combine motion and appearance for fully automatic segmentation of generic objects in videos. In: CVPR (2017)

    Google Scholar 

  20. Jerripothula, K.R., Cai, J., Lu, J., Yuan, J.: Object co-skeletonization with co-segmentation. In: CVPR (2017)

    Google Scholar 

  21. Jerripothula, K.R., Cai, J., Yuan, J.: Image co-segmentation via saliency co-fusion. IEEE Trans. Multimedia 18, 1896–1909 (2016)

    Article  Google Scholar 

  22. Keuper, M., Andres, B., Brox, T.: Motion trajectory segmentation via minimum cost multicuts. In: ICCV (2015)

    Google Scholar 

  23. Koh, Y.J., Kim, C.S.: Primary object segmentation in videos based on region augmentation and reduction. In: CVPR (2017)

    Google Scholar 

  24. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with gaussian edge potentials. In: NIPS (2011)

    Google Scholar 

  25. Krähenbühl, P., Koltun, V.: Geodesic object proposals. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 725–739. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_47

    Chapter  Google Scholar 

  26. Lao, D., Sundaramoorthi, G.: Extending layered models to 3D motion. In: ECCV (2018)

    Google Scholar 

  27. Lee, C., Jang, W., Sim, J., Kim, C.: Multiple random walkers and their application to image cosegmentation. In: CVPR (2015)

    Google Scholar 

  28. Lee, G., Tai, Y., Kim, J.: Deep saliency with encoded low level distance map and high level features. In: CVPR (2016)

    Google Scholar 

  29. Lee, Y.J., Kim, J., Grauman, K.: Key-segments for video object segmentation. In: ICCV (2011)

    Google Scholar 

  30. Li, B., Sun, Z., Li, Q., Wu, Y., Hu, A.: Group-wise deep object co-segmentation with co-attention recurrent neural network. In: ICCV (2019)

    Google Scholar 

  31. Li, G., Xie, Y., Lin, L., Yu, Y.: Instance-level salient object segmentation. In: CVPR (2017)

    Google Scholar 

  32. Li, G., Xie, Y., Wei, T., Wang, K., Lin, L.: Flow guided recurrent neural encoder for video salient object detection. In: CVPR (2018)

    Google Scholar 

  33. Li, G., Yu, Y.: Deep contrast learning for salient object detection (2016)

    Google Scholar 

  34. Li, S., Seybold, B., Vorobyov, A., Lei, X., Kuo, C.C.J.: Unsupervised video object segmentation with motion-based bilateral networks. In: ECCV (2018)

    Google Scholar 

  35. Li, W., Hosseini Jafari, O., Rother, C.: Deep object co-segmentation. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 638–653. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_40

    Chapter  Google Scholar 

  36. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  37. Liu, N., Han, J.: Dhsnet: deep hierarchical saliency network for salient object detection. In: CVPR (2016)

    Google Scholar 

  38. Liu, Z., Li, J., Ye, L., Sun, G., Shen, L.: Saliency detection for unconstrained videos using superpixel-level graph and spatiotemporal propagation. IEEE Trans. Circ. Syst. Video Technol. 27, 2527–2542 (2017)

    Article  Google Scholar 

  39. Liu, Z., Zhang, X., Luo, S., Meur, O.L.: Superpixel-based spatiotemporal saliency detection (2014)

    Google Scholar 

  40. Lu, X., Wang, W., Ma, C., Shen, J., Shao, L., Porikli, F.: See more, know more: unsupervised video object segmentation with co-attention siamese networks. In: CVPR (2019)

    Google Scholar 

  41. Luo, Z., Mishra, A., Achkar, A., Eichel, J.A., Li, S., Jodoin, P.: Non-local deep features for salient object detection. In: CVPR (2017)

    Google Scholar 

  42. Ochs, P., Brox, T.: Object segmentation in video: a hierarchical variational approach for turning point trajectories into dense regions. In: ICCV (2011)

    Google Scholar 

  43. Ochs, P., Malik, J., Brox, T.: Segmentation of moving objects by long term video analysis. IEEE Trans. Pattern Anal. Mach. Intell. 36, 1187–1200 (2013)

    Article  Google Scholar 

  44. Papazoglou, A., Ferrari, V.: Fast object segmentation in unconstrained video. In: ICCV (2013)

    Google Scholar 

  45. Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: CVPR (2016)

    Google Scholar 

  46. Rong, Q., Han, J., Zhang, D., Nie, F.: Object co-segmentation via graph optimized-flexible manifold ranking. In: CVPR (2016)

    Google Scholar 

  47. Rota Bulò, S., Porzi, L., Kontschieder, P.: In-place activated batchnorm for memory-optimized training of dnns. In: CVPR (2018)

    Google Scholar 

  48. Siam, M., et al.: Video object segmentation using teacher-student adaptation in a human robot interaction (hri) setting. In: ICRA (2019)

    Google Scholar 

  49. Song, H., Wang, W., Zhao, S., Shen, J., Lam, K.M.: Pyramid dilated deeper convlstm for video salient object detection. In: ECCV (2018)

    Google Scholar 

  50. Taylor, B., Karasev, V., Soatto, S.: Causal video object segmentation from persistence of occlusions. In: CVPR (2015)

    Google Scholar 

  51. Teichmann, M.T., Cipolla, R.: Convolutional crfs for semantic segmentation. arXiv preprint arXiv:1805.04777 (2018)

  52. Tokmakov, P., Alahari, K., Schmid, C.: Learning motion patterns in videos. In: CVPR (2017)

    Google Scholar 

  53. Tokmakov, P., Alahari, K., Schmid, C.: Learning video object segmentation with visual memory. In: ICCV (2017)

    Google Scholar 

  54. Tokmakov, P., Schmid, C., Alahari, K.: Learning to segment moving objects. IJCV 127, 282–301 (2019)

    Article  Google Scholar 

  55. Uijlings, J.R., Van De Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. Int. J. Comput. Vis. 104, 154–171 (2013)

    Article  Google Scholar 

  56. Wang, C., Zha, Z.J., Liu, D., Xie, H.: Robust deep co-saliency detection with group semantic. In: AAAI (2019)

    Google Scholar 

  57. Wang, C., Zhang, H., Yang, L., Cao, X., Xiong, H.: Multiple semantic matching on augmented \(n\) -partite graph for object co-segmentation. IEEE Trans. Image Process. 26, 5825–5839 (2017)

    Article  MathSciNet  Google Scholar 

  58. Wang, L., Wang, L., Lu, H., Zhang, P., Ruan, X.: Saliency detection with recurrent fully convolutional networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 825–841. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_50

    Chapter  Google Scholar 

  59. Wang, T., Borji, A., Zhang, L., Zhang, P., Lu, H.: A stagewise refinement model for detecting salient objects in images. In: ICCV (2017)

    Google Scholar 

  60. Wang, T., Zhang, L., Lu, H., Sun, C., Qi, J.: Kernelized subspace ranking for saliency detection. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 450–466. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_27

    Chapter  Google Scholar 

  61. Wang, W., Lu, X., Shen, J., Crandall, D.J., Shao, L.: Zero-shot video object segmentation via attentive graph neural networks. In: ICCV (2019)

    Google Scholar 

  62. Wang, W., Shen, J., Shao, L.: Consistent video saliency using local gradient flow optimization and global refinement. IEEE Trans. Image Process. 24, 4185–4196 (2015)

    Article  MathSciNet  Google Scholar 

  63. Wang, W., Shen, J., Shao, L.: Video salient object detection via fully convolutional networks. IEEE Trans. Image Process. 27, 38–49 (2018)

    Article  MathSciNet  Google Scholar 

  64. Wang, W., Shen, J., Yang, R., Porikli, F.: Saliency-aware video object segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 40, 20–33 (2018)

    Article  Google Scholar 

  65. Wang, W., et al.: Learning unsupervised video object segmentation through visual attention. In: CVPR (2019)

    Google Scholar 

  66. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR (2018)

    Google Scholar 

  67. Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-based manifold ranking. In: CVPR (2013)

    Google Scholar 

  68. Yang, Z., Wang, Q., Bertinetto, L., Hu, W., Bai, S., Torr, P.H.S.: Anchor diffusion for unsupervised video object segmentation. In: ICCV (2019)

    Google Scholar 

  69. Yuan, Z.H., Lu, T., Wu, Y.: Deep-dense conditional random fields for object co-segmentation. In: IJCAI (2017)

    Google Scholar 

  70. Zhang, P., Wang, D., Lu, H., Wang, H., Ruan, X.: Amulet: aggregating multi-level convolutional features for salient object detection. In: CVPR (2017)

    Google Scholar 

  71. Zhang, P., Wang, D., Lu, H., Wang, H., Yin, B.: Learning uncertain convolutional features for accurate saliency detection. In: ICCV (2017)

    Google Scholar 

  72. Zheng, S., et al.: Conditional random fields as recurrent neural networks. In: ICCV (2015)

    Google Scholar 

  73. Zhuo, T., Cheng, Z., Zhang, P., Wong, Y., Kankanhalli, M.: Unsupervised online video object segmentation with motion property understanding. IEEE Trans. Image Process. 29, 237–249 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by Hong Kong RGC GRF 16206819, Hong Kong RGC GRF 16203518 and Hong Kong T22-603/15N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingmin Zhen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhen, M. et al. (2020). Learning Discriminative Feature with CRF for Unsupervised Video Object Segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12372. Springer, Cham. https://doi.org/10.1007/978-3-030-58583-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58583-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58582-2

  • Online ISBN: 978-3-030-58583-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics