Skip to main content

Deep Reflectance Volumes: Relightable Reconstructions from Multi-view Photometric Images

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12348))

Included in the following conference series:

Abstract

We present a deep learning approach to reconstruct scene appearance from unstructured images captured under collocated point lighting. At the heart of Deep Reflectance Volumes is a novel volumetric scene representation consisting of opacity, surface normal and reflectance voxel grids. We present a novel physically-based differentiable volume ray marching framework to render these scene volumes under arbitrary viewpoint and lighting. This allows us to optimize the scene volumes to minimize the error between their rendered images and the captured images. Our method is able to reconstruct real scenes with challenging non-Lambertian reflectance and complex geometry with occlusions and shadowing. Moreover, it accurately generalizes to novel viewpoints and lighting, including non-collocated lighting, rendering photorealistic images that are significantly better than state-of-the-art mesh-based methods. We also show that our learned reflectance volumes are editable, allowing for modifying the materials of the captured scenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations and generative models for 3D point clouds. In: ICML, pp. 40–49 (2018)

    Google Scholar 

  2. Aittala, M., Aila, T., Lehtinen, J.: Reflectance modeling by neural texture synthesis. ACM Trans. Graph. 35(4), 65:1–65:13 (2016)

    Article  Google Scholar 

  3. Aittala, M., Weyrich, T., Lehtinen, J.: Two-shot SVBRDF capture for stationary materials. ACM Trans. Graph. 34(4), 110:1–110:13 (2015)

    Article  Google Scholar 

  4. Alldrin, N., Zickler, T., Kriegman, D.: Photometric stereo with non-parametric and spatially-varying reflectance. In: CVPR, pp. 1–8. IEEE (2008)

    Google Scholar 

  5. Baek, S.H., Jeon, D.S., Tong, X., Kim, M.H.: Simultaneous acquisition of polarimetric SVBRDF and normals. ACM Trans. Graph. 37(6), 268-1 (2018)

    Google Scholar 

  6. Bi, S., Kalantari, N.K., Ramamoorthi, R.: Patch-based optimization for image-based texture mapping. ACM Trans. Graph. 36(4), 106-1 (2017)

    Google Scholar 

  7. Bi, S., Xu, Z., Sunkavalli, K., Kriegman, D., Ramamoorthi, R.: Deep 3D capture: geometry and reflectance from sparse multi-view images. In: CVPR, pp. 5960–5969 (2020)

    Google Scholar 

  8. Buehler, C., Bosse, M., McMillan, L., Gortler, S., Cohen, M.: Unstructured lumigraph rendering. In: SIGGRAPH, pp. 425–432. ACM (2001)

    Google Scholar 

  9. Chen, Z., Chen, A., Zhang, G., Wang, C., Ji, Y., Kutulakos, K.N., Yu, J.: A neural rendering framework for free-viewpoint relighting. In: CVPR, June 2020

    Google Scholar 

  10. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. arXiv preprint arXiv:1812.02822 (2018)

  11. Debevec, P., Hawkins, T., Tchou, C., Duiker, H.P., Sarokin, W., Sagar, M.: Acquiring the reflectance field of a human face. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 145–156. ACM Press/Addison-Wesley Publishing Co. (2000)

    Google Scholar 

  12. Foo, S.C.: A gonioreflectometer for measuring the bidirectional reflectance of material for use in illumination computation. Ph.D. thesis, Citeseer (1997)

    Google Scholar 

  13. Furukawa, Y., Ponce, J.: Accurate, dense, and robust multiview stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1362–1376 (2009)

    Article  Google Scholar 

  14. Goldman, D.B., Curless, B., Hertzmann, A., Seitz, S.M.: Shape and spatially-varying BRDFs from photometric stereo. IEEE Trans. Pattern Anal. Mach. Intell. 32(6), 1060–1071 (2009)

    Article  Google Scholar 

  15. Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: A papier-mâché approach to learning 3D surface generation. In: CVPR, pp. 216–224 (2018)

    Google Scholar 

  16. Huang, P.H., Matzen, K., Kopf, J., Ahuja, N., Huang, J.B.: DeepMVS: learning multi-view stereopsis. In: CVPR, pp. 2821–2830 (2018)

    Google Scholar 

  17. Hui, Z., Sunkavalli, K., Lee, J.Y., Hadap, S., Wang, J., Sankaranarayanan, A.C.: Reflectance capture using univariate sampling of BRDFs. In: ICCV, pp. 5362–5370 (2017)

    Google Scholar 

  18. Ji, M., Gall, J., Zheng, H., Liu, Y., Fang, L.: SurfaceNet: an end-to-end 3D neural network for multiview stereopsis. In: ICCV, pp. 2307–2315 (2017)

    Google Scholar 

  19. Kanamori, Y., Endo, Y.: Relighting humans: occlusion-aware inverse rendering for full-body human images. ACM Trans. Graph. 37(6), 1–11 (2018)

    Article  Google Scholar 

  20. Kanazawa, A., Tulsiani, S., Efros, A.A., Malik, J.: Learning category-specific mesh reconstruction from image collections. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 386–402. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_23

    Chapter  Google Scholar 

  21. Kang, K., et al.: Learning efficient illumination multiplexing for joint capture of reflectance and shape (2019)

    Google Scholar 

  22. Karis, B., Games, E.: Real shading in unreal engine 4 (2013)

    Google Scholar 

  23. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, vol. 7 (2006)

    Google Scholar 

  24. Kniss, J., Premoze, S., Hansen, C., Shirley, P., McPherson, A.: A model for volume lighting and modeling. IEEE Trans. Vis. Comput. Graph. 9(2), 150–162 (2003)

    Article  Google Scholar 

  25. Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving. ICCV 38(3), 199–218 (2000). https://doi.org/10.1023/A:1008191222954

    Article  MATH  Google Scholar 

  26. Ladicky, L., Saurer, O., Jeong, S., Maninchedda, F., Pollefeys, M.: From point clouds to mesh using regression. In: ICCV, pp. 3893–3902 (2017)

    Google Scholar 

  27. Levoy, M., Hanrahan, P.: Light field rendering. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 31–42. ACM (1996)

    Google Scholar 

  28. Li, Z., Sunkavalli, K., Chandraker, M.: Materials for masses: SVBRDF acquisition with a single mobile phone image. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 74–90. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_5

    Chapter  Google Scholar 

  29. Li, Z., Xu, Z., Ramamoorthi, R., Sunkavalli, K., Chandraker, M.: Learning to reconstruct shape and spatially-varying reflectance from a single image. In: SIGGRAPH Asia 2018, p. 269. ACM (2018)

    Google Scholar 

  30. Liao, Y., Donne, S., Geiger, A.: Deep marching cubes: learning explicit surface representations. In: CVPR, pp. 2916–2925 (2018)

    Google Scholar 

  31. Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y.: Neural volumes: learning dynamic renderable volumes from images. ACM Trans. Graph. 38(4), 65 (2019)

    Article  Google Scholar 

  32. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput. Graph. 21(4), 163–169 (1987)

    Article  Google Scholar 

  33. Matusik, W., Pfister, H., Brand, M., McMillan, L.: A data-driven reflectance model. ACM Trans. Graph. 22(3), 759–769 (2003)

    Article  Google Scholar 

  34. Max, N.: Optical models for direct volume rendering. IEEE Trans. Vis. Comput. Graph. 1(2), 99–108 (1995)

    Article  Google Scholar 

  35. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. arXiv preprint arXiv:1812.03828 (2018)

  36. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis (2020)

    Google Scholar 

  37. Nam, G., Lee, J.H., Gutierrez, D., Kim, M.H.: Practical SVBRDF acquisition of 3D objects with unstructured flash photography. In: SIGGRAPH Asia 2018, p. 267. ACM (2018)

    Google Scholar 

  38. Newcombe, R.A., et al.: KinectFusion: real-time dense surface mapping and tracking. In: Proceedings of the 2011 10th IEEE International Symposium on Mixed and Augmented Reality, ISMAR 2011, pp. 127–136. IEEE Computer Society, Washington, DC, USA (2011)

    Google Scholar 

  39. Nielsen, J.B., Jensen, H.W., Ramamoorthi, R.: On optimal, minimal BRDF sampling for reflectance acquisition. ACM Trans. Graph. 34(6), 1–11 (2015)

    Article  Google Scholar 

  40. Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric rendering: learning implicit 3D representations without 3D supervision. In: CVPR, pp. 3504–3515 (2020)

    Google Scholar 

  41. Novák, J., Georgiev, I., Hanika, J., Jarosz, W.: Monte Carlo methods for volumetric light transport simulation. In: Computer Graphics Forum, vol. 37, pp. 551–576. Wiley Online Library (2018)

    Google Scholar 

  42. Paschalidou, D., Ulusoy, O., Schmitt, C., Van Gool, L., Geiger, A.: RayNet: learning volumetric 3D reconstruction with ray potentials. In: CVPR, pp. 3897–3906 (2018)

    Google Scholar 

  43. Peers, P., et al.: Compressive light transport sensing. ACM Trans. Graph. 28(1), 3 (2009)

    Article  Google Scholar 

  44. Philip, J., Gharbi, M., Zhou, T., Efros, A.A., Drettakis, G.: Multi-view relighting using a geometry-aware network. ACM Trans. Graph. 38(4), 1–14 (2019)

    Article  Google Scholar 

  45. Richter, S.R., Roth, S.: Matryoshka networks: predicting 3D geometry via nested shape layers. In: CVPR, pp. 1936–1944 (2018)

    Google Scholar 

  46. Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: CVPR (2016)

    Google Scholar 

  47. Schönberger, J.L., Zheng, E., Frahm, J.-M., Pollefeys, M.: Pixelwise view selection for unstructured multi-view stereo. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 501–518. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_31

    Chapter  Google Scholar 

  48. Sitzmann, V., Thies, J., Heide, F., Nießner, M., Wetzstein, G., Zollhofer, M.: DeepVoxels: learning persistent 3D feature embeddings. In: CVPR, pp. 2437–2446 (2019)

    Google Scholar 

  49. Srinivasan, P.P., Tucker, R., Barron, J.T., Ramamoorthi, R., Ng, R., Snavely, N.: Pushing the boundaries of view extrapolation with multiplane images. In: CVPR, pp. 175–184 (2019)

    Google Scholar 

  50. Sun, T., et al.: Single image portrait relighting. ACM Trans. Graph. (Proceedings SIGGRAPH) (2019)

    Google Scholar 

  51. Wang, J., Sun, B., Lu, Y.: MVPNet: multi-view point regression networks for 3D object reconstruction from a single image. arXiv preprint arXiv:1811.09410 (2018)

  52. Wittenbrink, C.M., Malzbender, T., Goss, M.E.: Opacity-weighted color interpolation, for volume sampling. In: Proceedings of the 1998 IEEE Symposium on Volume Visualization, pp. 135–142 (1998)

    Google Scholar 

  53. Wu, H., Wang, Z., Zhou, K.: Simultaneous localization and appearance estimation with a consumer RGB-D camera. IEEE Trans. Vis. Comput. Graph. 22(8), 2012–2023 (2015)

    Article  Google Scholar 

  54. Wu, Z., et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: CVPR, pp. 1912–1920 (2015)

    Google Scholar 

  55. Xia, R., Dong, Y., Peers, P., Tong, X.: Recovering shape and spatially-varying surface reflectance under unknown illumination. ACM Trans. Graph. 35(6), 187 (2016)

    Article  Google Scholar 

  56. Xu, Z., Bi, S., Sunkavalli, K., Hadap, S., Su, H., Ramamoorthi, R.: Deep view synthesis from sparse photometric images. ACM Trans. Graph. 38(4), 76 (2019)

    Google Scholar 

  57. Xu, Z., Nielsen, J.B., Yu, J., Jensen, H.W., Ramamoorthi, R.: Minimal BRDF sampling for two-shot near-field reflectance acquisition. ACM Trans. Graph. 35(6), 188 (2016)

    Google Scholar 

  58. Xu, Z., Sunkavalli, K., Hadap, S., Ramamoorthi, R.: Deep image-based relighting from optimal sparse samples. ACM Trans. Graph. 37(4), 126 (2018)

    Article  Google Scholar 

  59. Yao, Y., Luo, Z., Li, S., Fang, T., Quan, L.: MVSNet: depth inference for unstructured multi-view stereo. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 785–801. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_47

    Chapter  Google Scholar 

  60. Zhou, H., Hadap, S., Sunkavalli, K., Jacobs, D.W.: Deep single-image portrait relighting. In: ICCV, pp. 7194–7202 (2019)

    Google Scholar 

  61. Zhou, Q.Y., Koltun, V.: Color map optimization for 3D reconstruction with consumer depth cameras. ACM Trans. Graph. 33(4), 155 (2014)

    Google Scholar 

  62. Zhou, T., Tucker, R., Flynn, J., Fyffe, G., Snavely, N.: Stereo magnification: learning view synthesis using multiplane images. ACM Trans. Graph. 37(4), 1–12 (2018)

    Google Scholar 

  63. Zhou, Z., et al.: Sparse-as-possible SVBRDF acquisition. ACM Trans. Graph. 35(6), 189 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Giljoo Nam for help with the comparisons. This work was supported in part by ONR grants N000141712687, N000141912293, N000142012529, NSF grant 1617234, Adobe, the Ronald L. Graham Chair and the UC San Diego Center for Visual Computing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sai Bi .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (mp4 67788 KB)

Supplementary material 1 (pdf 3866 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bi, S. et al. (2020). Deep Reflectance Volumes: Relightable Reconstructions from Multi-view Photometric Images. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12348. Springer, Cham. https://doi.org/10.1007/978-3-030-58580-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58580-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58579-2

  • Online ISBN: 978-3-030-58580-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics