Skip to main content

Solving Phase Retrieval with a Learned Reference

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

Fourier phase retrieval is a classical problem that deals with the recovery of an image from the amplitude measurements of its Fourier coefficients. Conventional methods solve this problem via iterative (alternating) minimization by leveraging some prior knowledge about the structure of the unknown image. The inherent ambiguities about shift and flip in the Fourier measurements make this problem especially difficult; and most of the existing methods use several random restarts with different permutations. In this paper, we assume that a known (learned) reference is added to the signal before capturing the Fourier amplitude measurements. Our method is inspired by the principle of adding a reference signal in holography. To recover the signal, we implement an iterative phase retrieval method as an unrolled network. Then we use back propagation to learn the reference that provides us the best reconstruction for a fixed number of phase retrieval iterations. We performed a number of simulations on a variety of datasets under different conditions and found that our proposed method for phase retrieval via unrolled network and learned reference provides near-perfect recovery at fixed (small) computational cost. We compared our method with standard Fourier phase retrieval methods and observed significant performance enhancement using the learned reference.

R. Hyder and Z. Cai—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arab, F., Asif, M.S.: Fourier phase retrieval with arbitrary reference signal. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1479–1483. IEEE (2020)

    Google Scholar 

  2. Bahmani, S., Romberg, J.: Efficient compressive phase retrieval with constrained sensing vectors. In: Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), pp. 523–531 (2015)

    Google Scholar 

  3. Barmherzig, D., Sun, J., Li, P., Lane, T., Candès, E.: Holographic phase retrieval and reference design. Inverse Problems (2019)

    Google Scholar 

  4. Bostan, E., Kamilov, U.S., Waller, L.: Learning-based image reconstruction via parallel proximal algorithm. IEEE Sig. Process. Lett. 25(7), 989–993 (2018)

    Article  Google Scholar 

  5. Cai, T., Li, X., Ma, Z., et al.: Optimal rates of convergence for noisy sparse phase retrieval via thresholded wirtinger flow. Ann. Stat. 44(5), 2221–2251 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Candes, E., Li, X., Soltanolkotabi, M.: Phase retrieval from coded diffraction patterns. Appl. Comput. Harmon. Anal. 39(2), 277–299 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Candes, E., Li, X., Soltanolkotabi, M.: Phase retrieval via wirtinger flow: theory and algorithms. IEEE Trans. Inform. Theory 61(4), 1985–2007 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Candes, E., Strohmer, T., Voroninski, V.: Phaselift: exact and stable signal recovery from magnitude measurements via convex programming. Comm. Pure Appl. Math. 66(8), 1241–1274 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chandra, R., Zhong, Z., Hontz, J., McCulloch, V., Studer, C., Goldstein, T.: Phasepack: a phase retrieval library. In: Asilomar Conference on Signals, Systems, and Computers (2017)

    Google Scholar 

  10. Chang, H., Lou, Y., Ng, M., Zeng, T.: Phase retrieval from incomplete magnitude information via total variation regularization. SIAM. J. Sci. Comput. 38(6), A3672–A3695 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, Y., Candes, E.: Solving random quadratic systems of equations is nearly as easy as solving linear systems. In: Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), pp. 739–747 (2015)

    Google Scholar 

  12. Chen, Z., Jagatap, G., Nayer, S., Hegde, C., Vaswani, N.: Low rank fourier ptychography. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6538–6542, April 2018

    Google Scholar 

  13. Diamond, S., Sitzmann, V., Heide, F., Wetzstein, G.: Unrolled optimization with deep priors (2017). arXiv preprint arXiv:1705.08041

  14. Fienup, J.R.: Phase retrieval algorithms: a comparison. Appl. Opt. 21(15), 2758–2769 (1982)

    Article  Google Scholar 

  15. Gerchberg, R.W.: A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–246 (1972)

    Google Scholar 

  16. Gregor, K., LeCun, Y.: Learning fast approximations of sparse coding. In: Proceedings of the 27th International Conference on International Conference on Machine Learning, pp. 399–406 (2010)

    Google Scholar 

  17. Gross, D., Krahmer, F., Kueng, R.: Improved recovery guarantees for phase retrieval from coded diffraction patterns. Appl. Comput. Harmon. Anal. 42(1), 37–64 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guizar-Sicairos, M., Fienup, J.: Holography with extended reference by autocorrelation linear differential operation. Opt. Express 15(26), 17592–17612 (2007)

    Article  Google Scholar 

  19. Hammernik, K., Klatzer, T., Kobler, E., Recht, M.P., Sodickson, D.K., Pock, T., Knoll, F.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018)

    Article  Google Scholar 

  20. Hand, P., Leong, O., Voroninski, V.: Phase retrieval under a generative prior. In: Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), pp. 9154–9164 (2018)

    Google Scholar 

  21. Harrison, R.: Phase problem in crystallography. JOSA a 10(5), 1046–1055 (1993)

    Article  Google Scholar 

  22. Hyder, R., Hegde, C., Asif, M.: Fourier phase retrieval with side information using generative prior. In: Proceedings of the Asilomar Conf. Signals, Systems, and Computers. IEEE (2019)

    Google Scholar 

  23. Hyder, R., S., V., Hegde, C., Asif, M.: Alternating phase projected gradient descent with generative priors for solving compressive phase retrieval. In: Proceedings of the IEEE International Conference Acoustics, Speech, and Signal Processing (ICASSP), pp. 7705–7709. IEEE (2019)

    Google Scholar 

  24. Jaganathan, K., Oymak, S., Hassibi, B.: Recovery of sparse 1-D signals from the magnitudes of their fourier transform. In: Proceedings of the International Symposium on Information Theory Proceedings (ISIT), pp. 1473–1477. IEEE (2012)

    Google Scholar 

  25. Jagatap, G., Chen, Z., Hegde, C., Vaswani, N.: Sub-diffraction imaging using fourier ptychography and structured sparsity. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6493–6497, April 2018

    Google Scholar 

  26. Jagatap, G., Chen, Z., Nayer, S., Hegde, C., Vaswani, N.: Sample efficient fourier ptychography for structured data. IEEE Trans. Comput. Imaging 6, 344–357 (2020)

    Article  MathSciNet  Google Scholar 

  27. Jagatap, G., Hegde, C.: Fast, sample-efficient algorithms for structured phase retrieval. In: Advances in Neural Information Processing Systems, pp. 4917–4927 (2017)

    Google Scholar 

  28. Jagatap, G., Hegde, C.: Algorithmic guarantees for inverse imaging with untrained network priors. In: Advances in Neural Information Processing Systems, pp. 14832–14842 (2019)

    Google Scholar 

  29. Kamilov, U.S., Mansour, H.: Learning optimal nonlinearities for iterative thresholding algorithms. IEEE Sig. Process. Lett. 23(5), 747–751 (2016)

    Article  Google Scholar 

  30. Kellman, M., Bostan, E., Chen, M., Waller, L.: Data-driven design for fourier ptychographic microscopy. In: International Conference for Computational Photography, pp. 1–8 (2019)

    Google Scholar 

  31. Kellman, M.R., Bostan, E., Repina, N.A., Waller, L.: Physics-based learned design: optimized coded-illumination for quantitative phase imaging. IEEE Trans. Comput. Imaging 5(3), 344–353 (2019)

    Article  Google Scholar 

  32. Li, X., Voroninski, V.: Sparse signal recovery from quadratic measurements via convex programming. SIAM J. Math. Anal. 45(5), 3019–3033 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Maiden, A., Rodenburg, J.: An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 109(10), 1256–1262 (2009)

    Article  Google Scholar 

  34. Metzler, C.A., Schniter, P., Veeraraghavan, A., Baraniuk, R.G.: prDeep: robust phase retrieval with a flexible deep network. In: Proceedings of the International Conference on Machine Learning (2018)

    Google Scholar 

  35. Millane, R.: Phase retrieval in crystallography and optics. JOSA A 7(3), 394–411 (1990)

    Article  Google Scholar 

  36. Netrapalli, P., Jain, P., Sanghavi, S.: Phase retrieval using alternating minimization. In: Proceedings of the Advance in Neural Information Processing Systems (NeurIPS), pp. 2796–2804 (2013)

    Google Scholar 

  37. Nolte, D.D.: Optical Interferometry for Biology and Medicine, vol. 1. Springer Science & Business Media, New York (2011). https://doi.org/10.1007/978-1-4614-0890-1

    Book  Google Scholar 

  38. Ohlsson, H., Yang, A., Dong, R., Sastry, S.: CPRL-an extension of compressive sensing to the phase retrieval problem. In: Proceedings of the Advance in Neural Information Processing System (NeurIPS), pp. 1367–1375 (2012)

    Google Scholar 

  39. Park, I., Middleton, R., Coggrave, C.R., Ruiz, P.D., Coupland, J.M.: Characterization of the reference wave in a compact digital holographic camera. Appl. Opt. 57(1), A235–A241 (2018)

    Article  Google Scholar 

  40. Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci. Appl. 7(2), 17141–17141 (2018)

    Article  Google Scholar 

  41. Rodenburg, J.M.: Ptychography and related diffractive imaging methods. Adv. Imaging Electron Phys. 150, 87–184 (2008)

    Article  Google Scholar 

  42. Shamshad, F., Ahmed, A.: Robust compressive phase retrieval via deep generative priors (2018). arXiv preprint arXiv:1808.05854

  43. Shechtman, Y., Eldar, Y., Cohen, O., Chapman, H., Miao, J., Segev, M.: Phase retrieval with application to optical imaging: a contemporary overview. IEEE Sig. Process. Mag. 32(3), 87–109 (2015)

    Article  Google Scholar 

  44. Tahara, T., Quan, X., Otani, R., Takaki, Y., Matoba, O.: Digital holography and its multidimensional imaging applications: a review. Microscopy 67(2), 55–67 (2018)

    Article  Google Scholar 

  45. Wang, G., Giannakis, G.: Solving random systems of quadratic equations via truncated generalized gradient flow. In: Processing Advance in Neural Information Processing System (NeurIPS), pp. 568–576 (2016)

    Google Scholar 

  46. Wang, G., Zhang, L., Giannakis, G.B., Akcakaya, M., Chen, J.: Sparse phase retrieval via truncated amplitude flow. IEEE Trans. Sig. Process. 66, 479–491 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang, G., Giannakis, G., Saad, Y., Chen, J.: Solving most systems of random quadratic equations. In: Advances in Neural Information Processing Systems, pp. 1867–1877 (2017)

    Google Scholar 

  48. Wang, S., Fidler, S., Urtasun, R.: Proximal deep structured models. In: Advances in Neural Information Processing Systems, pp. 865–873 (2016)

    Google Scholar 

  49. Wei, K.: Solving systems of phaseless equations via Kaczmarz methods: a proof of concept study. Inverse Prob. 31(12), 125008 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Yang, Y., Sun, J., Li, H., Xu, Z.: Deep ADMM-net for compressive sensing MRI. In: Advances in Neural Information Processing Systems, pp. 10–18 (2016)

    Google Scholar 

  51. Yuan, Z., Wang, H.: Phase retrieval with background information. Inverse Prob. 35(5), 054003 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhang, H., Liang, Y.: Reshaped wirtinger flow for solving quadratic system of equations. In: Proceedings of the Advance in Neural Information Processing System (NeurIPS), pp. 2622–2630 (2016)

    Google Scholar 

Download references

Acknowledgment

The first two authors contributed equally in this work. This research was supported in parts by an ONR grant N00014-19-1-2264, DARPA REVEAL Program, and a Google Faculty Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Salman Asif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hyder, R., Cai, Z., Asif, M.S. (2020). Solving Phase Retrieval with a Learned Reference. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12375. Springer, Cham. https://doi.org/10.1007/978-3-030-58577-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58577-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58576-1

  • Online ISBN: 978-3-030-58577-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics