Skip to main content

Weakly Supervised Learning with Side Information for Noisy Labeled Images

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12375))

Included in the following conference series:

Abstract

In many real-world datasets, like WebVision, the performance of DNN based classifier is often limited by the noisy labeled data. To tackle this problem, some image related side information, such as captions and tags, often reveal underlying relationships across images. In this paper, we present an efficient weakly-supervised learning by using a Side Information Network (SINet), which aims to effectively carry out a large scale classification with severely noisy labels. The proposed SINet consists of a visual prototype module and a noise weighting module. The visual prototype module is designed to generate a compact representation for each category by introducing the side information. The noise weighting module aims to estimate the correctness of each noisy image and produce a confidence score for image ranking during the training procedure. The propsed SINet can largely alleviate the negative impact of noisy image labels, and is beneficial to train a high performance CNN based classifier. Besides, we released a fine-grained product dataset called AliProducts, which contains more than 2.5 million noisy web images crawled from the internet by using queries generated from 50,000 fine-grained semantic classes. Extensive experiments on several popular benchmarks (i.e. Webvision, ImageNet and Clothing-1M) and our proposed AliProducts achieve state-of-the-art performance. The SINet has won the first place in the 5000 category classification task on WebVision Challenge 2019, and outperforms other competitors by a large margin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://tianchi.aliyun.com/competition/entrance/231780/information.

References

  1. Deng, J., Dong, W., Socher, R., Li, J., Li, K., Li, F.: Imagenet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  2. Nettleton, D., Orriols, P., Fornells, A.: A study of the effect of different types of noise on the precision of supervised learning techniques. Artif. Intell. Rev. 33(4), 275–306 (2010)

    Article  Google Scholar 

  3. Pechenizkiy, M., Tsymbal, A., Puuronen, S., Pechenizkiy, O.: Class noise and supervised learning in medical domains: the effect of feature extraction. In: IEEE Symposium on Computer-Based Medical Systems (CBMS), pp. 708–713 (2006)

    Google Scholar 

  4. Brooks, J.: Support vector machines with the ramp loss and the hard margin loss. Oper. Res. 59(2), 467–479 (2011)

    Article  MathSciNet  Google Scholar 

  5. Ghosh, A., Kumar, H., Sastry, P.: Robust loss functions under label noise for deep neural networks. In: AAAI (2017)

    Google Scholar 

  6. Ghosh, A., Manwani, N., Sastry, P.: Making risk minimization tolerant to label noise. Neurocomputing 160, 93–107 (2015)

    Article  Google Scholar 

  7. Shirazi, H., Vasconcelos, N.: On the design of loss functions for classification: theory, robustness to outliers, and savageboost. In: NeurIPS (2009)

    Google Scholar 

  8. Rooyen, B., Menon, A., CWilliamson, R.: Learning with symmetric label noise: the importance of being unhinged. In: NeurIPS (2015)

    Google Scholar 

  9. Zhang, Z., Sabuncu, M.: Generalized cross entropy loss for training deep neural networks with noisy labels. In: NeurIPS (2018)

    Google Scholar 

  10. Jiang, L., Zhou, Z., Leung, T., Li, T., Li, F.: Mentornet: regularizing very deep neural networks on corrupted labels. arXiv preprint arXiv:1712.05055 (2017)

  11. Lee, K., He, X., Zhang, L., Yang, L.: Cleannet: transfer learning for scalable image classifier training with label noise. arXiv preprint arXiv:1711.07131 (2017)

  12. Ren, M., Zeng, W., Yang, B., Urtasun, R.: Learning to reweight examples for robust deep learning. arXiv preprint arXiv:1803.09050 (2018)

  13. Wang, Y., et al.: Iterative learning with open-set noisy labels. In: CVPR (2018)

    Google Scholar 

  14. Xue, C., Dou, Q., Shi, X., Chen, H., Heng, P.: Robust learning at noisy labeled medical images: applied to skin lesion classification. arxiv.org (2019)

  15. Kriegel, H., Kroger, P., Schubert, E., Zimek, A.: Loop: local outlier probabilities. In: CIKM (2009)

    Google Scholar 

  16. Guo, S., et al.: CurriculumNet: weakly supervised learning from large-scale web images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 139–154. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_9

    Chapter  Google Scholar 

  17. Reed, S., Lee, H., Anguelov, D., Szegedy, C., Erhan, D., Rabinovich, A.: Training deep neural networks on noisy labels with bootstrapping. arXiv preprint arXiv:1412.6596 (2014)

  18. Tanaka, D., Ikami, D., Yamasaki, T., Aizawa, K.: Joint optimization framework for learning with noisy labels. In: CVPR (2018)

    Google Scholar 

  19. Li, J., Wong, Y., Zhao, Q., Kankanhalli, M.: Learning to learn from noisy labeled data. In: CVPR (2019)

    Google Scholar 

  20. Han, J., Luo, P., Wang, X.: Deep self-learning from noisy labels. arXiv preprint arXiv:1908.02160 (2019)

  21. Zhang, W., Wang, Y., Qiao, Y.: MetaCleaner: learning to hallucinate clean representations for noisy-labeled visual recognition. In: CVPR (2019)

    Google Scholar 

  22. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  23. Zhu, X., Wu, X.: Class noise vs attribute noise: a quantitative study. Artif. Intell. Rev. 22(3), 177–210 (2004)

    Article  Google Scholar 

  24. Simonyan K., Zisserman A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

  25. Szegedy, C., et al.: Going deeper with convolutions. arXiv:1409.4842 (2014)

  26. Sukhbaatar, S., Bruna, J., Paluri, M., Bourdev, L., Fergus, R.: Training convolutional networks with noisy labels. arXiv preprint arXiv:1406.2080 (2014)

  27. Goldberger, J., Reuven, E.: Training deep neural-networks using a noise adaptation layer. In: ICLR (2017)

    Google Scholar 

  28. Patrini, G., Rozza, A., Menon, A., Nock, R., Qu, L.: Making deep neural networks robust to label noise: a loss correction approach. In: CVPR (2017)

    Google Scholar 

  29. Hendrycks, D., Mazeika, M., Wilson, D., Gimpel, K.: Using trusted data to train deep networks on labels corrupted by severe noise. In: NeurIPS (2018)

    Google Scholar 

  30. Zhang Z., Sabuncu, M.: Generalized cross entropy loss for training deep neural networks with noisy labels. In: NeurIPS (2018)

    Google Scholar 

  31. Li, Y., Yang, J., Song, Y., Cao, L., Luo, J., Li, L.: Learning from noisy labels with distillation. In: CVPR (2017)

    Google Scholar 

  32. Veit, A., Alldrin, N., Chechik, G., Krasin, I., Gupta, A., Belongie, S.: Learning from noisy large-scale datasets with minimal supervision. In: CVPR (2017)

    Google Scholar 

  33. Brodley, C., Friedl, M.: Identifying mislabeled training data. arXiv:1106.0219 (2011)

  34. Miranda, A., Garcia, L., Carvalho A., Lorena, A.: Use of classification algorithms in noise detection and elimination. In: HAIS (2009)

    Google Scholar 

  35. Barandela, R., Gasca, E.: Decontamination of training samples for supervised pattern recognition methods. In: ICAPR (2000)

    Google Scholar 

  36. Xiao, T., Xia, T., Yang, Y., Huang, C., Wang, X.: Learning from massive noisy labeled data for image classification. In: CVPR (2015)

    Google Scholar 

  37. Li, W., Wang, L., Li, W., Agustsson, E., Gool, L.: Webvision database: visual learning and understanding from web data. CoRR abs/1708.02862 (2017)

    Google Scholar 

  38. Alexander, B., Denzler, J.: Not just a matter of semantics: the relationship between visual and semantic similarity. In: German Conference on Pattern Recognition (2019)

    Google Scholar 

  39. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: ACL (2019)

    Google Scholar 

  40. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lele Cheng , Xiangzeng Zhou , Liming Zhao , Dangwei Li , Hong Shang , Yun Zheng , Pan Pan or Yinghui Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, L. et al. (2020). Weakly Supervised Learning with Side Information for Noisy Labeled Images. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12375. Springer, Cham. https://doi.org/10.1007/978-3-030-58577-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58577-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58576-1

  • Online ISBN: 978-3-030-58577-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics