Skip to main content

GroSS: Group-Size Series Decomposition for Grouped Architecture Search

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

We present a novel approach which is able to explore the configuration of grouped convolutions within neural networks. Group-size Series (GroSS) decomposition is a mathematical formulation of tensor factorisation into a series of approximations of increasing rank terms. GroSS allows for dynamic and differentiable selection of factorisation rank, which is analogous to a grouped convolution. Therefore, to the best of our knowledge, GroSS is the first method to enable simultaneous training of differing numbers of groups within a single layer, as well as all possible combinations between layers. In doing so, GroSS is able to train an entire grouped convolution architecture search-space concurrently. We demonstrate this through architecture searches with performance objectives on multiple datasets and networks. GroSS enables more effective and efficient search for grouped convolutional architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brock, A., Lim, T., Ritchie, J.M., Weston, N.: SMASH: one-shot model architecture search through hypernetworks. arXiv Preprint arXiv:1708.05344 (2017)

  2. Chen, Y., Jin, X., Kang, B., Feng, J., Yan, S.: Sharing residual units through collective tensor factorization to improve deep neural networks. In: IJCAI, pp. 635–641 (2018)

    Google Scholar 

  3. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

    Google Scholar 

  4. De Lathauwer, L.: Decompositions of a higher-order tensor in block terms–part II: definitions and uniqueness. SIAM J. Matrix Anal. Appl. 30(3), 1033–1066 (2008)

    Article  MathSciNet  Google Scholar 

  5. Denton, E.L., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting linear structure within convolutional networks for efficient evaluation. In: Advances in Neural Information Processing Systems, pp. 1269–1277 (2014)

    Google Scholar 

  6. Elthakeb, A.T., Pilligundla, P., Yazdanbakhsh, A., Kinzer, S., Esmaeilzadeh, H.: ReLeQ: a reinforcement learning approach for deep quantization of neural networks. arXiv Preprint arXiv:1811.01704 (2018)

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv Preprint arXiv:1704.04861 (2017)

  9. Ioannou, Y., Robertson, D., Cipolla, R., Criminisi, A.: Deep roots: Improving CNN efficiency with hierarchical filter groups. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1231–1240 (2017)

    Google Scholar 

  10. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural networks with low rank expansions. arXiv Preprint arXiv:1405.3866 (2014)

  11. Kim, Y.D., Park, E., Yoo, S., Choi, T., Yang, L., Shin, D.: Compression of deep convolutional neural networks for fast and low power mobile applications. arXiv Preprint arXiv:1511.06530 (2015)

  12. Kossaifi, J., Panagakis, Y., Anandkumar, A., Pantic, M.: TensorLy: tensor learning in Python. J. Mach. Learn. Res. 20(1), 925–930 (2019)

    MATH  Google Scholar 

  13. Krizhevsky, A., Nair, V., Hinton, G.: The CIFAR-10 dataset (2014). http://www.cs.toronto.edu/kriz/cifar. HTML 55

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  15. Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, I., Lempitsky, V.: Speeding-up convolutional neural networks using fine-tuned CP-decomposition. arXiv Preprint arXiv:1412.6553 (2014)

  16. Li, L., Talwalkar, A.: Random search and reproducibility for neural architecture search. arXiv Preprint arXiv:1902.07638 (2019)

  17. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. arXiv Preprint arXiv:1806.09055 (2018)

  18. Nakajima, S., Sugiyama, M., Babacan, S.D., Tomioka, R.: Global analytic solution of fully-observed variational Bayesian matrix factorization. J. Mach. Learn. Res. 14(Jan), 1–37 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  20. Sifre, L., Mallat, S.: Rigid-motion scattering for image classification (2014)

    Google Scholar 

  21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv Preprint arXiv:1409.1556 (2014)

  22. Tan, M., et al.: MnasNet: platform-aware neural architecture search for mobile. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2820–2828 (2019)

    Google Scholar 

  23. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. arXiv Preprint arXiv:1905.11946 (2019)

  24. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31(3), 279–311 (1966)

    Article  MathSciNet  Google Scholar 

  25. Vanhoucke, V., Senior, A., Mao, M.Z.: Improving the speed of neural networks on CPUs (2011)

    Google Scholar 

  26. Wang, P., Hu, Q., Fang, Z., Zhao, C., Cheng, J.: DeepSearch: a fast image search framework for mobile devices. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 14(1), 6 (2018)

    Google Scholar 

  27. Wu, B., et al.: FBNet: hardware-aware efficient ConvNet design via differentiable neural architecture search. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10734–10742 (2019)

    Google Scholar 

  28. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)

    Google Scholar 

  29. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

    Google Scholar 

  30. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8697–8710 (2018)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the European Commission Project Multiple-actOrs Virtual Empathic CARegiver for the Elder (MoveCare) for financially supporting the authors for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Howard-Jenkins .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 132 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Howard-Jenkins, H., Li, Y., Prisacariu, V.A. (2020). GroSS: Group-Size Series Decomposition for Grouped Architecture Search. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12371. Springer, Cham. https://doi.org/10.1007/978-3-030-58574-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58574-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58573-0

  • Online ISBN: 978-3-030-58574-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics