Skip to main content

NASA Neural Articulated Shape Approximation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12352))

Included in the following conference series:

Abstract

Efficient representation of articulated objects such as human bodies is an important problem in computer vision and graphics. To efficiently simulate deformation, existing approaches represent 3D objects using polygonal meshes and deform them using skinning techniques. This paper introduces neural articulated shape approximation (NASA), an alternative framework that enables representation of articulated deformable objects using neural indicator functions that are conditioned on pose. Occupancy testing using NASA is straightforward, circumventing the complexity of meshes and the issue of water-tightness. We demonstrate the effectiveness of NASA for 3D tracking applications, and discuss other potential extensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anguelov, D., Koller, D., Pang, H.C., Srinivasan, P., Thrun, S.: Recovering articulated object models from 3D range data. In: Uncertainty in Artificial Intelligence (2004)

    Google Scholar 

  2. Atzmon, M., Lipman, Y.: SAL: sign agnostic learning of shapes from raw data. arXiv preprint arXiv:1911.10414 (2019)

  3. Bailey, S.W., Otte, D., Dilorenzo, P., O’Brien, J.F.: Fast and deep deformation approximations. In: SIGGRAPH (2018)

    Google Scholar 

  4. Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep It SMPL: automatic estimation of 3D human pose and shape from a single image. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 561–578. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_34

    Chapter  Google Scholar 

  5. Bogo, F., Romero, J., Pons-Moll, G., Black, M.J.: Dynamic FAUST: registering human bodies in motion. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  6. Bouaziz, S., Tagliasacchi, A., Pauly, M.: Sparse iterative closest point. In: SGP (2013)

    Google Scholar 

  7. Chang, A.X., et al.: Shapenet: an information-rich 3D model repository. arXiv:1512.03012 (2015)

  8. Chen, Z., Yin, K., Fisher, M., Chaudhuri, S., Zhang, H.: Bae-net: branched autoencoder for shape co-segmentation. In: ICCV (2019)

    Google Scholar 

  9. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: CVPR (2019)

    Google Scholar 

  10. Chibane, J., Alldieck, T., Pons-Moll, G.: Implicit functions in feature space for 3D shape reconstruction and completion. In: CVPR (2020)

    Google Scholar 

  11. Crane, K., Weischedel, C., Wardetzky, M.: Geodesics in heat: a new approach to computing distance based on heat flow. ACM TOG 32(5), 1–11 (2013)

    Article  Google Scholar 

  12. Deng, B., Genova, K., Yazdani, S., Bouaziz, S., Hinton, G., Tagliasacchi, A.: Cvxnet: learnable convex decomposition. In: CVPR (2020)

    Google Scholar 

  13. Deng, B., Kornblith, S., Hinton, G.: Cerberus: a multi-headed derenderer. arXiv:1905.11940 (2019)

  14. Dou, M., et al.: Fusion4d: real-time performance capture of challenging scenes. ACM TOG 35(4), 1–13 (2016)

    Article  Google Scholar 

  15. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object reconstruction from a single image. In: CVPR (2017)

    Google Scholar 

  16. Felzenszwalb, P.F., Huttenlocher, D.P.: Distance transforms of sampled functions. Theory Comput. 8(1), 415–428 (2012)

    Article  MathSciNet  Google Scholar 

  17. Gao, L., et al.: SDM-NET: deep generative network for structured deformable mesh. ACM TOG 38(6), 1–15 (2019)

    Google Scholar 

  18. Genova, K., Cole, F., Sud, A., Sarna, A., Funkhouser, T.: Deep structured implicit functions. In: CVPR (2019)

    Google Scholar 

  19. de Goes, F., Goldenstein, S., Velho, L.: A hierarchical segmentation of articulated bodies. In: SGP (2008)

    Google Scholar 

  20. Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: Atlasnet: a papier-mâché approach to learning 3D surface generation. arXiv preprint arXiv:1802.05384 (2018)

  21. Huang, Q., Koltun, V., Guibas, L.: Joint shape segmentation with linear programming. ACM TOG (2011)

    Google Scholar 

  22. Ioannou, Y., Robertson, D., Cipolla, R., Criminisi, A.: Deep roots: improving CNN efficiency with hierarchical filter groups. In: CVPR (2017)

    Google Scholar 

  23. Jacobson, A., Deng, Z., Kavan, L., Lewis, J.: Skinning: real-time shape deformation. In: ACM SIGGRAPH Courses (2014)

    Google Scholar 

  24. Jacobson, A., Kavan, L., Sorkine-Hornung, O.: Robust inside-outside segmentation using generalized winding numbers. ACM TOG 32(4), 1–12 (2013)

    Article  Google Scholar 

  25. James, D.L.: Twigg, C.D.: Skinning mesh animations. In: SIGGRAPH (2005)

    Google Scholar 

  26. Joseph-Rivlin, M., Zvirin, A., Kimmel, R.: Momen(e)t: flavor the moments in learning to classify shapes. In: CVPR Workshops (2019)

    Google Scholar 

  27. Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: CVPR (2018)

    Google Scholar 

  28. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  29. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)

    Google Scholar 

  30. Le, B.H., Deng, Z.: Smooth skinning decomposition with rigid bones. ACM TOG 31(6), 1–10 (2012)

    Article  Google Scholar 

  31. Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In: SIGGRAPH (2000)

    Google Scholar 

  32. Lin, M.C., Manocha, U.D., Cohen, J.: Collision detection: algorithms and applications (1996)

    Google Scholar 

  33. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. In: SIGGRAPH Asia (2015)

    Google Scholar 

  34. Lorenz, D., Bereska, L., Milbich, T., Ommer, B.: Unsupervised part-based disentangling of object shape and appearance. arXiv:1903.06946 (2019)

  35. Mahmood, N., Ghorbani, N., Troje, N.F., Pons-Moll, G., Black, M.J.: AMASS: archive of motion capture as surface shapes. In: ICCV (2019)

    Google Scholar 

  36. Melax, S., Keselman, L., Orsten, S.: Dynamics based 3D skeletal hand tracking. In: Graphics Interface (2013)

    Google Scholar 

  37. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. arXiv:1812.03828 (2018)

  38. Omran, M., Lassner, C., Pons-Moll, G., Gehler, P., Schiele, B.: Neural body fitting: unifying deep learning and model based human pose and shape estimation. In: International Conference on 3D Vision (3DV) (2018)

    Google Scholar 

  39. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: CVPR (2019)

    Google Scholar 

  40. Pavlakos, G., Zhu, L., Zhou, X., Daniilidis, K.: Learning to estimate 3D human pose and shape from a single color image. In: CVPR (2018)

    Google Scholar 

  41. Remelli, E., Tkach, A., Tagliasacchi, A., Pauly, M.: Low-dimensionality calibration through local anisotropic scaling for robust hand model personalization. In: ICCV (2017)

    Google Scholar 

  42. Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., Li, H.: PIFu: pixel-aligned implicit function for high-resolution clothed human digitization. In: CVPR (2019)

    Google Scholar 

  43. Samet, H.: Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS. Addison-Wesley Longman Publishing Co., Inc., Boston (1990)

    Google Scholar 

  44. Shen, J., et al.: The phong surface: efficient 3D model fitting using lifted optimization (2020)

    Google Scholar 

  45. Shotton, J., et al.: Real-time human pose recognition in parts from single depth images. In: CVPR (2011)

    Google Scholar 

  46. Sitzmann, V., Martel, J.N.P., Bergman, A.W., Lindell, D.B., Wetzstein, G.: Implicit neural representations with periodic activation functions (2020)

    Google Scholar 

  47. Tagliasacchi, A., Bouaziz, S.: Dynamic 2D/3D registration. In: Proceedings of Symposium on Geometry Processing (Technical Course Notes) (2018)

    Google Scholar 

  48. Tagliasacchi, A., Schröder, M., Tkach, A., Bouaziz, S., Botsch, M., Pauly, M.: Robust articulated-ICP for real-time hand tracking. In: SGP (2015)

    Google Scholar 

  49. Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. arXiv preprint arXiv:2006.10739 (2020)

  50. Tatarchenko, M., Richter, S.R., Ranftl, R., Li, Z., Koltun, V., Brox, T.: What do single-view 3D reconstruction networks learn? In: CVPR (2019)

    Google Scholar 

  51. Taylor, J., et al.: Articulated distance fields for ultra-fast tracking of hands interacting. ACM Trans. Graph. (TOG) 36(6), 1–12 (2017)

    Article  Google Scholar 

  52. Tkach, A., Tagliasacchi, A., Remelli, E., Pauly, M., Fitzgibbon, A.: Online generative model personalization for hand tracking. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 36(6), 1–11 (2017)

    Google Scholar 

  53. Tung, H.Y., Tung, H.W., Yumer, E., Fragkiadaki, K.: Self-supervised learning of motion capture. In: Advances in Neural Information Processing Systems, pp. 5236–5246 (2017)

    Google Scholar 

  54. Valentin, J., Keskin, C., Pidlypenskyi, P., Makadia, A., Sud, A., Bouaziz, S.: Tensorflow graphics: computer graphics meets deep learning (2019)

    Google Scholar 

  55. Wang, H., Sridhar, S., Huang, J., Valentin, J., Song, S., Guibas, L.J.: Normalized object coordinate space for category-level 6D object pose and size estimation. In: CVPR (2019)

    Google Scholar 

  56. Xu, Q., Wang, W., Ceylan, D., Mech, R., Neumann, U.: DISN: deep implicit surface network for high-quality single-view 3D reconstruction. In: NeurIPS (2019)

    Google Scholar 

  57. Zhou, Y., Barnes, C., Lu, J., Yang, J., Li, H.: On the continuity of rotation representations in neural networks. In: CVPR (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boyang Deng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 25693 KB)

Supplementary material 2 (pdf 721 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deng, B. et al. (2020). NASA Neural Articulated Shape Approximation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12352. Springer, Cham. https://doi.org/10.1007/978-3-030-58571-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58571-6_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58570-9

  • Online ISBN: 978-3-030-58571-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics