Advertisement

Beyond Controlled Environments: 3D Camera Re-localization in Changing Indoor Scenes

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12352)

Abstract

Long-term camera re-localization is an important task with numerous computer vision and robotics applications. Whilst various outdoor benchmarks exist that target lighting, weather and seasonal changes, far less attention has been paid to appearance changes that occur indoors. This has led to a mismatch between popular indoor benchmarks, which focus on static scenes, and indoor environments that are of interest for many real-world applications. In this paper, we adapt 3RScan – a recently introduced indoor RGB-D dataset designed for object instance re-localization – to create RIO10, a new long-term camera re-localization benchmark focused on indoor scenes. We propose new metrics for evaluating camera re-localization and explore how state-of-the-art camera re-localizers perform according to these metrics. We also examine in detail how different types of scene change affect the performance of different methods, based on novel ways of detecting such changes in a given RGB-D frame. Our results clearly show that long-term indoor re-localization is an unsolved problem. Our benchmark and tools are publicly available at https://www.waldjohannau.github.io/RIO10.

Notes

Acknowledgements

This work was supported by the Centre Digitisation Bavaria (ZD.B), the Swedish Foundation for Strategic Research (Semantic Mapping and Visual Navigation for Smart Robots), the Chalmers AI Research Centre (CHAIR) (VisLocLearn), Five AI Ltd. and Google Inc.

Supplementary material

504444_1_En_28_MOESM1_ESM.pdf (69.8 mb)
Supplementary material 1 (pdf 71425 KB)

References

  1. 1.
    Acharya, D., Khoshelham, K., Winter, S.: BIM-PoseNet: indoor camera localisation using a 3D indoor model and deep learning from synthetic images. J. Photogramm. Remote Sens. 150, 245–258 (2019)CrossRefGoogle Scholar
  2. 2.
    Anoosheh, A., Sattler, T., Timofte, R., Pollefeys, M., Gool, L.V.: Night-to-day image translation for retrieval-based localization. In: International Conference on Robotics and Automation. IEEE (2019)Google Scholar
  3. 3.
    Arandjelović, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN architecture for weakly supervised place recognition. In: Conference on Computer Vision and Pattern Recognition. IEEE (2016)Google Scholar
  4. 4.
    Ardeshir, S., Zamir, A.R., Torroella, A., Shah, M.: GIS-assisted object detection and geospatial localization. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 602–617. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10599-4_39CrossRefGoogle Scholar
  5. 5.
    Armeni*, I., Sax*, A., Zamir, A.R., Savarese, S.: Joint 2D–3D-Semantic Data for Indoor Scene Understanding. arXiv:1702.01105 (2017)
  6. 6.
    Atanasov, N., Zhu, M., Daniilidis, K., Pappas, G.J.: Localization from semantic observations via the matrix permanent. Int. J. Robot. Res. 35(1–3), 73–99 (2016)CrossRefGoogle Scholar
  7. 7.
    Badino, H., Huber, D., Kanade, T.: Visual topometric localization. In: Intelligent Vehicles Symposium (IV) (2011)Google Scholar
  8. 8.
    Bae, H., Walker, M., White, J., Pan, Y., Sun, Y., Golparvar-Fard, M.: Fast and scalable structure-from-motion based localization for high-precision mobile augmented reality systems. J. Mobile User Exp. 5(1), 1–21 (2016)CrossRefGoogle Scholar
  9. 9.
    Balntas, V., et al.: (SILDa): Scape imperial localisation dataset. https://image-matching-workshop.github.io/challenge/ (2019)
  10. 10.
    Balntas, V., Li, S., Prisacariu, V.: RelocNet: continuous metric learning relocalisation using neural nets. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) European Conference on Computer Vision(2018)Google Scholar
  11. 11.
    Benbihi, A., Geist, M., Pradalier, C.: ELF: embedded localisation of features in pre-trained CNN. In: International Conference on Computer Vision. IEEE (2019)Google Scholar
  12. 12.
    Brachmann, E., et al.: DSAC - Differentiable RANSAC for camera localization. In: Conference on Computer Vision and Pattern Recognition. IEEE (2017)Google Scholar
  13. 13.
    Brachmann, E., Michel, F., Krull, A., Yang, M.Y., Gumhold, S., Rother, C.: Uncertainty-driven 6D pose estimation of objects and scenes from a single rgb image. In: Conference on Computer Vision and Pattern Recognition. IEEE (2016)Google Scholar
  14. 14.
    Brachmann, E., Rother, C.: Learning less is more - 6D camera localization via 3d surface regression. In: Conference on Computer Vision and Pattern Recognition. IEEE (2018)Google Scholar
  15. 15.
    Brachmann, E., Rother, C.: Expert sample consensus applied to camera re-localization. In: International Conference on Computer Vision. IEEE (2019)Google Scholar
  16. 16.
    Brachmann, E., Rother, C.: Neural-guided ransac: learning where to sample model hypotheses. In: International Conference on Computer Vision. IEEE (2019)Google Scholar
  17. 17.
    Brachmann, E., Rother, C.: Visual Camera Re-Localization from RGB and RGB-D Images Using DSAC. arXiv:2002.12324 (2020)
  18. 18.
    Brahmbhatt, S., Gu, J., Kim, K., Hays, J., Kautz, J.: Geometry-aware learning of maps for camera localization. In: Conference on Computer Vision and Pattern Recognition. IEEE (2018)Google Scholar
  19. 19.
    Bresson, G., Alsayed, Z., Yu, L., Glaser, S.: Simultaneous localization and mapping: a survey of current trends in autonomous driving. Trans. Intell. Veh. 2(3), 194–220 (2017)CrossRefGoogle Scholar
  20. 20.
    Bui, M., Baur, C., Navab, N., Ilic, S., Albarqouni, S.: Adversarial Networks for Camera Pose Regression and Refinement. (2019)Google Scholar
  21. 21.
    Carlevaris-Bianco, N., Ushani, A.K., Eustice, R.M.: University of Michigan North Campus long-term vision and lidar dataset. Int. J. Robot. Res. 35(9), 1023–1035 (2016)CrossRefGoogle Scholar
  22. 22.
    Castle, R., Klein, G., Murray, D.W.: Video-rate localization in multiple maps for wearable augmented reality. In: International Symposium on Wearable Computers. pp. 15–22. IEEE (2008)Google Scholar
  23. 23.
    Cavallari*, T., Bertinetto, L., Mukhoti, J., Torr, P., Golodetz*, S.: Let’s take this online: adapting scene coordinate regression network predictions for online rgb-d camera relocalisation. In: International Conference on 3D Vision. IEEE, Québec, Canada (2019)Google Scholar
  24. 24.
    Cavallari*, T., et al.: Real-time rgb-d camera pose estimation in novel scenes using a relocalisation cascade. IEEE Trans. Pattern Anal. Mach. Intell. (2019) Google Scholar
  25. 25.
    Cavallari, T., et al.: On-the-fly adaptation of regression forests for online camera relocalisation. In: Conference on Computer Vision and Pattern Recognition (2017)Google Scholar
  26. 26.
    Chang, A., et al.: Matterport3D: learning from rgb-d data in indoor environments. In: International Conference on 3D Vision. IEEE (2017)Google Scholar
  27. 27.
    Chen, D.M., et al.: City-scale landmark identification on mobile devices. In: Conference on Computer Vision and Pattern Recognition. IEEE (2011)Google Scholar
  28. 28.
    Chen, D.M., et al.: City-scale landmark identification on mobile devices. In: Conference on Computer Vision and Pattern Recognition. pp. 737–744. IEEE (2011)Google Scholar
  29. 29.
    Clark, R., Wang, S., Markham, A., Trigoni, N., Wen, H.: VidLoc: a deep spatio-temporal model for 6-dof video-clip relocalization. In: Conference on Computer Vision and Pattern Recognition. pp. 6856–6864. IEEE (2017)Google Scholar
  30. 30.
    Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: ScanNet: richly-annotated 3d reconstructions of indoor scenes. In: Conference on Computer Vision and Pattern Recognition. IEEE (2017)Google Scholar
  31. 31.
    Deng, L., Chen, Z., Chen, B., Duan, Y., Zhou, J.: Incremental image set querying based localization. Neurocomputing 208, 315–324 (2016)CrossRefGoogle Scholar
  32. 32.
    DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperPoint: self-supervised interest point detection and description. In: Conference on Computer Vision and Pattern Recognition Workshops. IEEE (2018)Google Scholar
  33. 33.
    Duong, N.D., Kacete, A., Sodalie, C., Richard, P.Y., Royan, J.: xyzNet: towards machine learning camera relocalization by using a scene coordinate prediction network. In: International Symposium on Mixed and Augmented Reality. IEEE (2018)Google Scholar
  34. 34.
    Dusmanu, M., et al.: D2-Net: a trainable CNN for joint detection and description of local features. In: Conference on Computer Vision and Pattern Recognition. IEEE (2019)Google Scholar
  35. 35.
    Gálvez-López, D., Tardós, J.D.: Real-time loop detection with bags of binary words. In: International Conference on Intelligent Robots and Systems. pp. 51–58. IEEE (2011)Google Scholar
  36. 36.
    Gee, A.P., Mayol-Cuevas, W.: 6D Relocalisation for RGBD cameras using synthetic view regression. In: British Machine Vision Conference. pp. 1–11. BMVA (2012)Google Scholar
  37. 37.
    Germain, H., Bourmaud, G., Lepetit, V.: Sparse-to-dense hypercolumn matching for long-term visual localization. In: International Conference on 3D Vision. IEEE (2019)Google Scholar
  38. 38.
    Glocker, B., Izadi, S., Shotton, J., Criminisi, A.: Real-time RGB-D camera relocalization. In: International Symposium on Mixed and Augmented Reality. IEEE (2013)Google Scholar
  39. 39.
    Glocker, B., Shotton, J., Criminisi, A., Izadi, S.: Real-time RGB-D camera relocalization via randomized ferns for keyframe encoding. IEEE Trans. Vis. Comput. Graph. 21(5), 571–583 (2015)CrossRefGoogle Scholar
  40. 40.
    Golodetz*, S., et al.: Collaborative large-scale dense 3d reconstruction with online inter-agent pose optimisation. IEEE Trans. Vis. Comput. Graph. 24(11), 2895–2905 (2018)CrossRefGoogle Scholar
  41. 41.
    Golodetz*, S., et al.: SemanticPaint: interactive segmentation and learning of 3d worlds. In: ACM SIGGRAPH Emerging Technologies. p. 22 (2015)Google Scholar
  42. 42.
    Guzman-Rivera, A., et al.: Multi-output learning for camera relocalization. In: Conference on Computer Vision and Pattern Recognition. pp. 1114–1121. IEEE (2014)Google Scholar
  43. 43.
    He, K., Lu, Y., Sclaroff, S.: Local descriptors optimized for average precision. In: Conference on Computer Vision and Pattern Recognition. pp. 596–605. IEEE (2018)Google Scholar
  44. 44.
    Hua, B.S., Pham, Q.H., Nguyen, D.T., Tran, M.K., Yu, L.F., Yeung, S.K.: SceneNN: a scene meshes dataset with aNNotations. In: International Conference on 3D Vision. IEEE (2016)Google Scholar
  45. 45.
    Irschara, A., Zach, C., Frahm, J.M., Bischof, H.: From structure-from-motion point clouds to fast location recognition. In: Conference on Computer Vision and Pattern Recognition. IEEE (2009)Google Scholar
  46. 46.
    Kacete, A., Wentz, T., Royan, J.: Decision forest for efficient and robust camera relocalization. In: International Symposium on Mixed and Augmented Reality. pp. 20–24. IEEE (2017)Google Scholar
  47. 47.
    Kendall, A., Cipolla, R.: Modelling uncertainty in deep learning for camera relocalization. In: International Conference on Robotics and Automation. IEEE (2016)Google Scholar
  48. 48.
    Kendall, A., Cipolla, R.: Geometric loss functions for camera pose regression with deep learning. In: Conference on Computer Vision and Pattern Recognition. IEEE (2017)Google Scholar
  49. 49.
    Kendall, A., Grimes, M., Cipolla, R.: PoseNet: a convolutional network for real-time 6-dof camera relocalization. In: International Conference on Computer Vision. pp. 2938–2946. IEEE (2015)Google Scholar
  50. 50.
    Larsson, M., Stenborg, E., Toft, C., Hammarstrand, L., Sattler, T., Kahl, F.: fine-grained segmentation networks: self-supervised segmentation for improved long-term visual localization. In: International Conference on Computer Vision. IEEE (2019)Google Scholar
  51. 51.
    Laskar*, Z., Melekhov*, I., Kalia, S., Kannala, J.: Camera relocalization by computing pairwise relative poses using convolutional neural network. In: International Conference on Computer Vision Workshops. pp. 929–938. IEEE (2017)Google Scholar
  52. 52.
    Li, J., Meger, D., Dudek, G.: Semantic mapping for view-invariant relocalization. In: International Conference on Robotics and Automation. IEEE (2019)Google Scholar
  53. 53.
    Li, Q., et al.: Relative Geometry-Aware Siamese Neural Network for 6DOF Camera Relocalization. arXiv:1901.01049v2 (2019)
  54. 54.
    Li, W., et al.: InteriorNet: Mega-scale multi-sensor photo-realistic indoor scenes dataset. In: British Machine Vision Conference. BMVA (2018)Google Scholar
  55. 55.
    Li, X., Ylioinas, J., Kannala, J.: Full-frame scene coordinate regression for image-based localization. In: Robotics: Science and Systems (2018)Google Scholar
  56. 56.
    Li, X., Ylioinas, J., Verbeek, J., Kannala, J.: scene coordinate regression with angle-based reprojection loss for camera relocalization. In: Leal-Taixé, L., Roth, S. (eds.) European Conference on Computer Vision (2018)Google Scholar
  57. 57.
    Li, X., Wu, C., Zach, C., Lazebnik, S., Frahm, J.-M.: Modeling and recognition of landmark image collections using iconic scene graphs. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 427–440. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-88682-2_33CrossRefGoogle Scholar
  58. 58.
    Li, Y., Snavely, N., Huttenlocher, D., Fua, P.: Worldwide pose estimation using 3d point clouds. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 15–29. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33718-5_2CrossRefGoogle Scholar
  59. 59.
    Lim, H., Sinha, S.N., Cohen, M.F., Uyttendaele, M.: Real-time image-based 6-dof localization in large-scale environments. In: Conference on Computer Vision and Pattern Recognition. IEEE (2012)Google Scholar
  60. 60.
    Lu, G., Yan, Y., Kolagunda, A., Kambhamettu, C.: A fast 3d indoor-localization approach based on video queries. In: MultiMedia Modeling. pp. 218–230 (2016)Google Scholar
  61. 61.
    Lynen, S., Sattler, T., Bosse, M., Hesch, J., Pollefeys, M., Siegwart, R.: Get out of my lab: large-scale, real-time visual-inertial localization. In: Robotics: Science and Systems (2015)Google Scholar
  62. 62.
    Maddern, W., Pascoe, G., Linegar, C., Newman, P.: 1 year, 1000km: the oxford robotcar dataset. Int. J. Robot. Res. 36(1), 3–15 (2017)CrossRefGoogle Scholar
  63. 63.
    Massiceti, D., Krull, A., Brachmann, E., Rother, C., Torr, P.H.S.: Random forests versus neural networks - what’s best for camera localization? In: International Conference on Robotics and Automation. IEEE (2017)Google Scholar
  64. 64.
    Melekhov, I., Ylioinas, J., Kannala, J., Rahtu, E.: Image-based Localization using hourglass networks. In: International Conference on Computer Vision Workshops. pp. 879–886. IEEE (2017)Google Scholar
  65. 65.
    Meng, L., Chen, J., Tung, F., Little, J.J., de Silva, C.W.: exploiting random rgb and sparse features for camera pose estimation. In: British Machine Vision Conference. BMVA (2016)Google Scholar
  66. 66.
    Meng, L., Chen, J., Tung, F., Little, J.J., Valentin, J., de Silva, C.W.: Backtracking regression forests for accurate camera relocalization. In: International Conference on Intelligent Robots and Systems. IEEE (2017)Google Scholar
  67. 67.
    Meng, L., Tung, F., Little, J.J., Valentin, J., de Silva, C.W.: exploiting points and lines in regression forests for rgb-d camera relocalization. In: International Conference on Intelligent Robots and Systems. IEEE (2018)Google Scholar
  68. 68.
    Nakashima, R., Seki, A.: SIR-Net: scene-independent end-to-end trainable visual relocalizer. In: International Conference on 3D Vision. IEEE (2019)Google Scholar
  69. 69.
    Paucher, R., Turk, M.: Location-based augmented reality on mobile phones. In: Conference on Computer Vision and Pattern Recognition Workshops. pp. 9–16. IEEE (2010)Google Scholar
  70. 70.
    Porav, H., Maddern, W., Newman, P.: Adversarial training for adverse conditions: robust metric localisation using appearance transfer. In: International Conference on Robotics and Automation. IEEE (2018)Google Scholar
  71. 71.
    Radwan, N., Valada, A., Burgard, W.: VLocNet++: deep multitask learning for semantic visual localization and odometry. Robot. Autom. Lett. 3(4), 4407–4414 (2018)CrossRefGoogle Scholar
  72. 72.
    Rodas, N.L., Barrera, F., Padoy, N.: Marker-less ar in the hybrid room using equipment detection for camera relocalization. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 463–470. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24553-9_57CrossRefGoogle Scholar
  73. 73.
    Saeedi, S., et al.: Characterizing visual localization and mapping datasets. In: International Conference on Robotics and Automation. IEEE (2019)Google Scholar
  74. 74.
    Salas-Moreno, R.F., Newcombe, R.A., Strasdat, H., Kelly, P.H.J., Davison, A.J.: SLAM++: simultaneous localisation and mapping at the level of objects. In: Conference on Computer Vision and Pattern Recognition. IEEE (2013)Google Scholar
  75. 75.
    Sarlin, P.E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: robust hierarchical localization at large scale. In: Conference on Computer Vision and Pattern Recognition. IEEE (2019)Google Scholar
  76. 76.
    Sattler, T., Leibe, B., Kobbelt, L.: Fast image-based localization using direct 2d-to-3d matching. In: International Conference on Computer Vision. pp. 667–674. IEEE (2011)Google Scholar
  77. 77.
    Sattler, T., Leibe, B., Kobbelt, L.: Improving image-based localization by active correspondence search. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 752–765. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33718-5_54CrossRefGoogle Scholar
  78. 78.
    Sattler, T., Leibe, B., Kobbelt, L.: Efficient & effective prioritized matching for large-scale image-based localization. IEEE Trans. Pattern Anal. Mach. Intell. 39(9), 1744–1756 (2016)CrossRefGoogle Scholar
  79. 79.
    Sattler, T., et al.: Benchmarking 6dof outdoor visual localization in changing conditions. In: Conference on Computer Vision and Pattern Recognition. IEEE, Piscataway, NJ (2018)Google Scholar
  80. 80.
    Sattler, T., Weyand, T., Leibe, B., Kobbelt, L.: image retrieval for image-based localization revisited. In: British Machine Vision Conference. BMVA (2012)Google Scholar
  81. 81.
    Sattler, T., Zhou, Q., Pollefeys, M., Leal-Taixé, L.: Understanding the limitations of cnn-based absolute camera pose regression. In: Conference on Computer Vision and Pattern Recognition. IEEE (2019)Google Scholar
  82. 82.
    Schönberger, J.L., Pollefeys, M., Geiger, A., Sattler, T.: Semantic visual localization. In: Conference on Computer Vision and Pattern Recognition. IEEE (2018)Google Scholar
  83. 83.
    Shotton, J., Glocker, B., Zach, C., Izadi, S., Criminisi, A., Fitzgibbon, A.: Scene coordinate regression forests for camera relocalization in rgb-d images. In: Conference on Computer Vision and Pattern Recognition. pp. 2930–2937. IEEE (2013)Google Scholar
  84. 84.
    Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from rgbd images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33715-4_54CrossRefGoogle Scholar
  85. 85.
    Song, S., Lichtenberg, S.P., Xiao, J.: SUN RGB-D: A RGB-D scene understanding benchmark suite. In: Conference on Computer Vision and Pattern Recognition. pp. 567–576. IEEE (2015)Google Scholar
  86. 86.
    Taira, H., et al.: InLoc: Indoor visual localization with dense matching and view synthesis. In: Conference on Computer Vision and Pattern Recognition. IEEE (2018)Google Scholar
  87. 87.
    Taira, H., et al.: Is This the right place? geometric-semantic pose verification for indoor visual localization. In: International Conference on Computer Vision. IEEE (October 2019)Google Scholar
  88. 88.
    Toft, C., Olsson, C., Kahl, F.: Long-term 3d localization and pose from semantic labellings. In: International Conference on Computer Vision. IEEE (2017)Google Scholar
  89. 89.
    Toft, C., et al.: Semantic match consistency for long-term visual localization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) European Conference on Computer Vision (2018)Google Scholar
  90. 90.
    Torii, A., Arandjelović, R., Sivic, J., Okutomi, M., Pajdla, T.: 24/7 place recognition by view synthesis. In: Conference on Computer Vision and Pattern Recognition. IEEE (2015)Google Scholar
  91. 91.
    Torii, A., Sivic, J., Pajdla, T.: Visual localization by linear combination of image descriptors. In: International Conference on Computer Vision Workshops. IEEE (2011)Google Scholar
  92. 92.
    Valada*, A., Radwan*, N., Burgard, W.: Deep auxiliary learning for visual localization and odometry. In: International Conference on Robotics and Automation. IEEE (2018)Google Scholar
  93. 93.
    Valentin, J., et al.: Learning to navigate the energy landscape. In: International Conference on 3D Vision. pp. 323–332. IEEE (2016)Google Scholar
  94. 94.
    Valentin, J., Nießner, M., Shotton, J., Fitzgibbon, A., Izadi, S., Torr, P.: Exploiting uncertainty in regression forests for accurate camera relocalization. In: Conference on Computer Vision and Pattern Recognition. IEEE (2015)Google Scholar
  95. 95.
    Valentin, J., et al.: SemanticPaint: interactive 3d labeling and learning at your fingertips. IEEE Trans. Graph. 34(5), 154 (2015)MathSciNetGoogle Scholar
  96. 96.
    Walch, F., et al.: Image-based localization using LSTMs for structured feature correlation. In: International Conference on Computer Vision. IEEE (2017)Google Scholar
  97. 97.
    Wald, J., Avetisyan, A., Navab, N., Tombari, F., Niessner, M.: RIO: 3D object instance re-localization in changing indoor environments. In: International Conference on Computer Vision. IEEE (2019)Google Scholar
  98. 98.
    Widya, A.R., Torii, A., Okutomi, M.: Structure from motion using dense cnn features with keypoint relocalization. IEEE Trans. Comput. Vis. Appl. 10(1), 6 (2018)CrossRefGoogle Scholar
  99. 99.
    Wijmans, E., Furukawa, Y.: Exploiting 2D floorplan for building-scale panorama RGBD alignment. In: Conference on Computer Vision and Pattern Recognition. IEEE (2017)Google Scholar
  100. 100.
    Wu, J., Ma, L., Hu, X.: Delving deeper into convolutional neural networks for camera relocalization. In: International Conference on Robotics and Automation. IEEE (2017)Google Scholar
  101. 101.
    Yang*, L., Bai*, Z., Tang, C., Li, H., Furukawa, Y., Tan, P.: SANet: scene agnostic network for camera localization. In: International Conference on Computer Vision. IEEE (2019)Google Scholar
  102. 102.
    Zamir, A.R., Shah, M.: Accurate image localization based on google maps street view. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) European Conference on Computer Vision (2010)Google Scholar
  103. 103.
    Zhang, W., Kosecka, J.: Image based localization in urban environments. In: 3DIM-PVT. IEEE (2006)Google Scholar
  104. 104.
    Zhou, Q., Sattler, T., Pollefeys, M., Leal-Taixe, L.: To learn or not to learn: visual localization from essential matrices. In: International Conference on Robotics and Automation. IEEE (2020)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Technical University of MunichMunichGermany
  2. 2.Chalmers University of TechnologyGothenburgSweden
  3. 3.CIIRC, Czech Technical University in PraguePragueCzechia
  4. 4.Five AI Ltd.CambridgeEngland
  5. 5.Google Inc.Mountain ViewUSA

Personalised recommendations