Advertisement

Improving One-Stage Visual Grounding by Recursive Sub-query Construction

Conference paper
  • 515 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12359)

Abstract

We improve one-stage visual grounding by addressing current limitations on grounding long and complex queries. Existing one-stage methods encode the entire language query as a single sentence embedding vector, e.g., taking the embedding from BERT or the hidden state from LSTM. This single vector representation is prone to overlooking the detailed descriptions in the query. To address this query modeling deficiency, we propose a recursive sub-query construction framework, which reasons between image and query for multiple rounds and reduces the referring ambiguity step by step. We show our new one-stage method obtains \(5.0\%, 4.5\%, 7.5\%, 12.8\%\) absolute improvements over the state-of-the-art one-stage approach on ReferItGame, RefCOCO, RefCOCO+, and RefCOCOg, respectively. In particular, superior performances on longer and more complex queries validates the effectiveness of our query modeling. Code is available at https://github.com/zyang-ur/ReSC.

Keywords

Visual grounding Query modeling Referring expressions 

Notes

Acknowledgment

This work is supported in part by NSF awards IIS-1704337, IIS-1722847, and IIS-1813709, Twitch Fellowship, as well as our corporate sponsors.

Supplementary material

504468_1_En_23_MOESM1_ESM.pdf (4 mb)
Supplementary material 1 (pdf 4072 KB)

References

  1. 1.
    Bajaj, M., Wang, L., Sigal, L.: G3raphground: Graph-based language grounding. In: ICCV (2019)Google Scholar
  2. 2.
    Chen, D., Manning, C.D.: A fast and accurate dependency parser using neural networks. In: EMNLP, pp. 740–750 (2014)Google Scholar
  3. 3.
    Chen, K., Kovvuri, R., Gao, J., Nevatia, R.: MSRC: multimodal spatial regression with semantic context for phrase grounding. In: Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval, pp. 23–31. ACM (2017)Google Scholar
  4. 4.
    Chen, K., Kovvuri, R., Nevatia, R.: Query-guided regression network with context policy for phrase grounding. In: ICCV (2017)Google Scholar
  5. 5.
    Chen, X., Ma, L., Chen, J., Jie, Z., Liu, W., Luo, J.: Real-time referring expression comprehension by single-stage grounding network. arXiv preprint arXiv:1812.03426 (2018)
  6. 6.
    Choy, C.B., Xu, D., Gwak, J.Y., Chen, K., Savarese, S.: 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 628–644. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46484-8_38CrossRefGoogle Scholar
  7. 7.
    De Vries, H., Strub, F., Mary, J., Larochelle, H., Pietquin, O., Courville, A.C.: Modulating early visual processing by language. In: Advances in Neural Information Processing Systems, pp. 6594–6604 (2017)Google Scholar
  8. 8.
    Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
  9. 9.
    Dogan, P., Sigal, L., Gross, M.: Neural sequential phrase grounding (seqground). In: CVPR (2019)Google Scholar
  10. 10.
    Dumoulin, V., Shlens, J., Kudlur, M.: A learned representation for artistic style. In: ICLR (2017)Google Scholar
  11. 11.
    Escalante, H.J., et al.: The segmented and annotated IAPR TC-12 benchmark. CVIU (2010)Google Scholar
  12. 12.
    Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.R., Schmidhuber, J.: LSTM: a search space odyssey. IEEE Trans. Neural Networks Learn. Syst. 28, 2222–2232 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)Google Scholar
  14. 14.
    Hu, R., Rohrbach, M., Andreas, J., Darrell, T., Saenko, K.: Modeling relationships in referential expressions with compositional modular networks. In: CVPR (2017)Google Scholar
  15. 15.
    Hu, R., Xu, H., Rohrbach, M., Feng, J., Saenko, K., Darrell, T.: Natural language object retrieval. In: CVPR (2016)Google Scholar
  16. 16.
    Hudson, D.A., Manning, C.D.: Compositional attention networks for machine reasoning. In: ICLR (2018)Google Scholar
  17. 17.
    Kazemzadeh, S., Ordonez, V., Matten, M., Berg, T.: Referitgame: referring to objects in photographs of natural scenes. In: EMNLP (2014)Google Scholar
  18. 18.
    Li, J., et al.: Deep attribute-preserving metric learning for natural language object retrieval. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 181–189. ACM (2017)Google Scholar
  19. 19.
    Li, S., Xiao, T., Li, H., Zhou, B., Yue, D., Wang, X.: Person search with natural language description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1970–1979 (2017)Google Scholar
  20. 20.
    Liao, Y., et al.: A real-time cross-modality correlation filtering method for referring expression comprehension. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10880–10889 (2020)Google Scholar
  21. 21.
    Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10602-1_48CrossRefGoogle Scholar
  22. 22.
    Lin, Z., et al.: A structured self-attentive sentence embedding. In: ICLR (2017)Google Scholar
  23. 23.
    Liu, C., Lin, Z., Shen, X., Yang, J., Lu, X., Yuille, A.: Recurrent multimodal interaction for referring image segmentation. In: ICCV (2017)Google Scholar
  24. 24.
    Liu, D., Zhang, H., Wu, F., Zha, Z.J.: Learning to assemble neural module tree networks for visual grounding. In: ICCV (2019)Google Scholar
  25. 25.
    Liu, J., Wang, L., Yang, M.H.: Referring expression generation and comprehension via attributes. In: ICCV (2017)Google Scholar
  26. 26.
    Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46448-0_2CrossRefGoogle Scholar
  27. 27.
    Liu, X., Wang, Z., Shao, J., Wang, X., Li, H.: Improving referring expression grounding with cross-modal attention-guided erasing. In: CVPR (2019)Google Scholar
  28. 28.
    Luo, G., et al.: Multi-task collaborative network for joint referring expression comprehension and segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10034–10043 (2020)Google Scholar
  29. 29.
    Mao, J., Huang, J., Toshev, A., Camburu, O., Yuille, A.L., Murphy, K.: Generation and comprehension of unambiguous object descriptions. In: CVPR (2016)Google Scholar
  30. 30.
    Nagaraja, V.K., Morariu, V.I., Davis, L.S.: Modeling context between objects for referring expression understanding. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 792–807. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46493-0_48CrossRefGoogle Scholar
  31. 31.
    Perez, E., Strub, F., De Vries, H., Dumoulin, V., Courville, A.: Film: Visual reasoning with a general conditioning layer. In: AAAI (2018)Google Scholar
  32. 32.
    Plummer, B.A., Kordas, P., Kiapour, M.H., Zheng, S., Piramuthu, R., Lazebnik, S.: Conditional image-text embedding networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 258–274. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01258-8_16CrossRefGoogle Scholar
  33. 33.
    Plummer, B.A., Wang, L., Cervantes, C.M., Caicedo, J.C., Hockenmaier, J., Lazebnik, S.: Flickr30k entities: collecting region-to-phrase correspondences for richer image-to-sentence models. Int. J. Comput. Vis. (2017)Google Scholar
  34. 34.
    Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
  35. 35.
    Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)Google Scholar
  36. 36.
    Rohrbach, A., Rohrbach, M., Hu, R., Darrell, T., Schiele, B.: Grounding of textual phrases in images by reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 817–834. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46448-0_49CrossRefGoogle Scholar
  37. 37.
    Sadhu, A., Chen, K., Nevatia, R.: Zero-shot grounding of objects from natural language queries. In: ICCV (2019)Google Scholar
  38. 38.
    Tieleman, T., Hinton, G.: Lecture 6.5-RMSPROP: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks Mach. Learn. 4, 26–30 (2012)Google Scholar
  39. 39.
    Uijlings, J.R., Van De Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. Int. J. Comput. Vis. 104, 154–171 (2013)CrossRefGoogle Scholar
  40. 40.
    Wang, L., Li, Y., Huang, J., Lazebnik, S.: Learning two-branch neural networks for image-text matching tasks. IEEE Trans. Pattern Anal. Mach. Intell. (2018)Google Scholar
  41. 41.
    Wang, L., Li, Y., Lazebnik, S.: Learning deep structure-preserving image-text embeddings. In: CVPR (2016)Google Scholar
  42. 42.
    Wang, P., Wu, Q., Cao, J., Shen, C., Gao, L., Hengel, A.V.D.: Neighbourhood watch: referring expression comprehension via language-guided graph attention networks. In: CVPR (2019)Google Scholar
  43. 43.
    Wolf, T., et al.: Huggingface’s transformers: state-of-the-art natural language processing. arXiv preprint arXiv:1910.03771 (2019)
  44. 44.
    Xingjian, S., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810 (2015)Google Scholar
  45. 45.
    Yang, S., Li, G., Yu, Y.: Cross-modal relationship inference for grounding referring expressions. In: CVPR (2019)Google Scholar
  46. 46.
    Yang, S., Li, G., Yu, Y.: Dynamic graph attention for referring expression comprehension. In: ICCV (2019)Google Scholar
  47. 47.
    Yang, Z., Gong, B., Wang, L., Huang, W., Yu, D., Luo, J.: A fast and accurate one-stage approach to visual grounding. In: ICCV (2019)Google Scholar
  48. 48.
    Yu, L., et al.: Mattnet: Modular attention network for referring expression comprehension. In: CVPR (2018)Google Scholar
  49. 49.
    Yu, L., Poirson, P., Yang, S., Berg, A.C., Berg, T.L.: Modeling context in referring expressions. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 69–85. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46475-6_5CrossRefGoogle Scholar
  50. 50.
    Yu, L., Tan, H., Bansal, M., Berg, T.L.: A joint speaker-listener-reinforcer model for referring expressions. In: CVPR (2017)Google Scholar
  51. 51.
    Zhang, H., Niu, Y., Chang, S.F.: Grounding referring expressions in images by variational context. In: CVPR (2018)Google Scholar
  52. 52.
    Zhuang, B., Wu, Q., Shen, C., Reid, I., van den Hengel, A.: Parallel attention: a unified framework for visual object discovery through dialogs and queries. In: CVPR (2018)Google Scholar
  53. 53.
    Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 391–405. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10602-1_26CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of RochesterRochesterUSA
  2. 2.Tencent AI LabBellevueUSA

Personalised recommendations