Skip to main content

3D-Rotation-Equivariant Quaternion Neural Networks

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12365))

Included in the following conference series:

Abstract

This paper proposes a set of rules to revise various neural networks for 3D point cloud processing to rotation-equivariant quaternion neural networks (REQNNs). We find that when a neural network uses quaternion features, the network feature naturally has the rotation-equivariance property. Rotation equivariance means that applying a specific rotation transformation to the input point cloud is equivalent to applying the same rotation transformation to all intermediate-layer quaternion features. Besides, the REQNN also ensures that the intermediate-layer features are invariant to the permutation of input points. Compared with the original neural network, the REQNN exhibits higher rotation robustness.

W. Shen, B. Zhang and S. Huang—Have equal contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The PointNet++ for shape classification used in this paper is slightly revised by concatenating 3D coordinates to input features of the 1-st and 4-th convolution layers, in order to enrich the input information. For fair comparisons, both the REQNN and the original PointNet++ are revised in this way.

  2. 2.

    We add one more convolution layer in the Quaternion2Real module in the REQNN revised from DGCNN, in order to obtain reliable real-valued features considering that the DGCNN has no downsampling operations. For fair comparisons, we add the same convolution layer to the same location of the original DGCNN.

  3. 3.

    The classification accuracy in the scenario of NR/AR in Table 4 and Table 5 was slightly different for PointNet++ [22] (23.57% vs. 21.35%) and DGCNN [33] (30.05% vs. 29.74%). It was because architectures of PointNet++ (see footnote 1) and DGCNN (see footnote 2) examined in Table 4 and Table 5 were slightly different. Nevertheless, this did not essentially change our conclusions.

References

  1. https://www.kaggle.com/daavoo/3d-mnist/version/13

  2. Arjovsky, M., Shah, A., Bengio, Y.: Unitary evolution recurrent neural networks. In: International Conference on Machine Learning, pp. 1120–1128 (2016)

    Google Scholar 

  3. Chang, A.X., et al.: ShapeNet: An information-rich 3D model repository. arXiv preprint arXiv:1512.03012 (2015)

  4. Chen, C., Li, G., Xu, R., Chen, T., Wang, M., Lin, L.: ClusterNet: deep hierarchical cluster network with rigorously rotation-invariant representation for point cloud analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4994–5002 (2019)

    Google Scholar 

  5. Cohen, T.S., Geiger, M., Köhler, J., Welling, M.: Spherical CNNs. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=Hkbd5xZRb

  6. Cohen, T.S., Welling, M.: Steerable CNNs. arXiv preprint arXiv:1612.08498 (2016)

  7. Danihelka, I., Wayne, G., Uria, B., Kalchbrenner, N., Graves, A.: Associative long short-term memory. arXiv preprint arXiv:1602.03032 (2016)

  8. Deng, H., Birdal, T., Ilic, S.: PPF-FoldNet: unsupervised learning of rotation invariant 3D local descriptors. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 620–638. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_37

    Chapter  Google Scholar 

  9. Gaudet, C.J., Maida, A.S.: Deep quaternion networks. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2018)

    Google Scholar 

  10. Guberman, N.: On complex valued convolutional neural networks. arXiv preprint arXiv:1602.09046 (2016)

  11. Hamilton, W.R.: On quaternions; or on a new system of imaginaries in algebra. Lond. Edinb. Dublin Philos. Mag. J. Sci. 33(219), 58–60 (1848)

    Google Scholar 

  12. Hua, B.S., Tran, M.K., Yeung, S.K.: Pointwise convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 984–993 (2018)

    Google Scholar 

  13. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, pp. 2017–2025 (2015)

    Google Scholar 

  14. Jiang, M., Wu, Y., Zhao, T., Zhao, Z., Lu, C.: PointSIFT: a SIFT-like network module for 3D point cloud semantic segmentation. arXiv preprint arXiv:1807.00652 (2018)

  15. Kendall, A., Grimes, M., Cipolla, R.: PoseNet: a convolutional network for real-time 6-DOF camera relocalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2938–2946 (2015)

    Google Scholar 

  16. Klokov, R., Lempitsky, V.: Escape from cells: deep kd-networks for the recognition of 3D point cloud models. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 863–872 (2017)

    Google Scholar 

  17. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: convolution on x-transformed points. In: Advances in Neural Information Processing Systems, pp. 820–830 (2018)

    Google Scholar 

  18. Liu, X., Han, Z., Liu, Y.S., Zwicker, M.: Point2Sequence: learning the shape representation of 3D point clouds with an attention-based sequence to sequence network. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8778–8785 (2019)

    Google Scholar 

  19. Liu, Y., Fan, B., Xiang, S., Pan, C.: Relation-shape convolutional neural network for point cloud analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8895–8904 (2019)

    Google Scholar 

  20. Parcollet, T., et al.: Quaternion convolutional neural networks for end-to-end automatic speech recognition. In: Interspeech 2018, 19th Annual Conference of the International Speech Communication Association, pp. 22–26 (2018)

    Google Scholar 

  21. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  22. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, pp. 5099–5108 (2017)

    Google Scholar 

  23. Rao, Y., Lu, J., Zhou, J.: Spherical fractal convolutional neural networks for point cloud recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 452–460 (2019)

    Google Scholar 

  24. Shen, Y., Feng, C., Yang, Y., Tian, D.: Mining point cloud local structures by kernel correlation and graph pooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4548–4557 (2018)

    Google Scholar 

  25. Shi, S., Wang, X., Li, H.: PointRCNN: 3D object proposal generation and detection from point cloud. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–779 (2019)

    Google Scholar 

  26. Shuster, M.D., et al.: A survey of attitude representations. Navigation 8(9), 439–517 (1993)

    MathSciNet  Google Scholar 

  27. Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional neural networks on graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3693–3702 (2017)

    Google Scholar 

  28. Su, H., et al.: SPLATNet: sparse lattice networks for point cloud processing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2530–2539 (2018)

    Google Scholar 

  29. Thomas, N., et al.: Tensor field networks: rotation-and translation-equivariant neural networks for 3D point clouds. arXiv preprint arXiv:1802.08219 (2018)

  30. Trabelsi, C., et al.: Deep complex networks. arXiv preprint arXiv:1705.09792 (2017)

  31. Van Dyk, D.A., Meng, X.L.: The art of data augmentation. J. Comput. Graph. Stat. 10(1), 1–50 (2001)

    Article  MathSciNet  Google Scholar 

  32. Wang, W., Yu, R., Huang, Q., Neumann, U.: SGPN: similarity group proposal network for 3D point cloud instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2569–2578 (2018)

    Google Scholar 

  33. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. arXiv preprint arXiv:1801.07829 (2018)

  34. Weisstein, E.W.: Euler angles (2009)

    Google Scholar 

  35. Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. In: Advances in Neural Information Processing Systems, pp. 4880–4888 (2016)

    Google Scholar 

  36. Wolter, M., Yao, A.: Complex gated recurrent neural networks. In: Advances in Neural Information Processing Systems, pp. 10536–10546 (2018)

    Google Scholar 

  37. Wu, W., Qi, Z., Fuxin, L.: PointConv: deep convolutional networks on 3D point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9621–9630 (2019)

    Google Scholar 

  38. Wu, Z., et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1912–1920 (2015)

    Google Scholar 

  39. Xiang, L., Ma, H., Zhang, H., Zhang, Y., Zhang, Q.: Complex-valued neural networks for privacy protection. arXiv preprint arXiv:1901.09546 (2019)

  40. You, Y., et al.: PRIN: pointwise rotation-invariant network. arXiv preprint arXiv:1811.09361 (2018)

  41. Yu, L., Li, X., Fu, C.W., Cohen-Or, D., Heng, P.A.: PU-Net: point cloud upsampling network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2790–2799 (2018)

    Google Scholar 

  42. Zhang, Y., Lu, Z., Xue, J.H., Liao, Q.: A new rotation-invariant deep network for 3D object recognition. In: 2019 IEEE International Conference on Multimedia and Expo (ICME), pp. 1606–1611. IEEE (2019)

    Google Scholar 

  43. Zhang, Z., Hua, B.S., Rosen, D.W., Yeung, S.K.: Rotation invariant convolutions for 3D point clouds deep learning. In: 2019 International Conference on 3D Vision (3DV), pp. 204–213. IEEE (2019)

    Google Scholar 

  44. Zhao, H., Jiang, L., Fu, C.W., Jia, J.: PointWeb: enhancing local neighborhood features for point cloud processing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5565–5573 (2019)

    Google Scholar 

  45. Zhao, Y., Birdal, T., Lenssen, J.E., Menegatti, E., Guibas, L., Tombari, F.: Quaternion equivariant capsule networks for 3D point clouds. arXiv preprint arXiv:1912.12098 (2019)

  46. Zhu, X., Xu, Y., Xu, H., Chen, C.: Quaternion convolutional neural networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 645–661. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_39

    Chapter  Google Scholar 

Download references

Acknowledgments

The work is partially supported by the National Key Research and Development Project (No. 213), the National Nature Science Foundation of China (No. 61976160, U19B2043, and 61906120), the Special Project of the Ministry of Public Security (No. 20170004), and the Key Lab of Information Network Security, Ministry of Public Security (No.C18608).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanshi Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 236 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shen, W., Zhang, B., Huang, S., Wei, Z., Zhang, Q. (2020). 3D-Rotation-Equivariant Quaternion Neural Networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12365. Springer, Cham. https://doi.org/10.1007/978-3-030-58565-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58565-5_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58564-8

  • Online ISBN: 978-3-030-58565-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics