Advertisement

The Average Mixing Kernel Signature

Conference paper
  • 497 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12365)

Abstract

We introduce the Average Mixing Kernel Signature (AMKS), a novel signature for points on non-rigid three-dimensional shapes based on the average mixing kernel and continuous-time quantum walks. The average mixing kernel holds information on the average transition probabilities of a quantum walk between each pair of vertices of the mesh until a time T. We define the AMKS by decomposing the spectral contributions of the kernel into several bands, allowing us to limit the influence of noise-dominated high-frequency components and obtain a more descriptive signature. We also show through a perturbation theory analysis of the kernel that choosing a finite stopping time T leads to noise and deformation robustness for the AMKS. We perform an extensive experimental evaluation on two widely used shape matching datasets under varying level of noise, showing that the AMKS outperforms two state-of-the-art descriptors, namely the Heat Kernel Signature (HKS) and the similarly quantum-walk based Wave Kernel Signature (WKS) .

Keywords

Shape representation Shape analysis Quantum walks 

Notes

Acknowledgements

Luca Cosmo was supported by the ERC Starting Grant No. 802554 (SPECGEO) and the ERC Consolidator grant No. 724228 (LEMAN).

Supplementary material

504476_1_En_1_MOESM1_ESM.pdf (181 kb)
Supplementary material 1 (pdf 181 KB)

References

  1. 1.
    Aubry, M., Schlickewei, U., Cremers, D.: Pose-consistent 3D shape segmentation based on a quantum mechanical feature descriptor. In: Mester, R., Felsberg, M. (eds.) DAGM 2011. LNCS, vol. 6835, pp. 122–131. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23123-0_13CrossRefGoogle Scholar
  2. 2.
    Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: a quantum mechanical approach to shape analysis. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1626–1633. IEEE (2011)Google Scholar
  3. 3.
    Bai, L., Rossi, L., Torsello, A., Hancock, E.R.: A quantum Jensen-Shannon graph kernel for unattributed graphs. Pattern Recogn. 48(2), 344–355 (2015)CrossRefGoogle Scholar
  4. 4.
    Bogo, F., Romero, J., Loper, M., Black, M.J.: Faust: dataset and evaluation for 3D mesh registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3794–3801 (2014)Google Scholar
  5. 5.
    Boscaini, D., Masci, J., Rodolà, E., Bronstein, M.M., Cremers, D.: Anisotropic diffusion descriptors. Comput. Graph. Forum 35, 431–441 (2016). Wiley Online LibraryCrossRefGoogle Scholar
  6. 6.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical Geometry of Non-Rigid Shapes. Springer, New York (2008)zbMATHGoogle Scholar
  7. 7.
    Bronstein, M.M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid shape recognition. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1704–1711. IEEE (2010)Google Scholar
  8. 8.
    Corman, É., Ovsjanikov, M., Chambolle, A.: Supervised descriptor learning for non-rigid shape matching. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8928, pp. 283–298. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16220-1_20CrossRefGoogle Scholar
  9. 9.
    Cosmo, L., Rodola, E., Albarelli, A., Mémoli, F., Cremers, D.: Consistent partial matching of shape collections via sparse modeling. Comput. Graph. Forum 36, 209–221 (2017). Wiley Online LibraryCrossRefGoogle Scholar
  10. 10.
    Cosmo, L., Rodolà, E., Bronstein, M.M., Torsello, A., Cremers, D., Sahillioglu, Y.: Shrec’16: partial matching of deformable shapes. In: Proceedings of the 3DOR, vol. 2(9), p. 12 (2016)Google Scholar
  11. 11.
    Cosmo, L., Rodola, E., Masci, J., Torsello, A., Bronstein, M.M.: Matching deformable objects in clutter. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 1–10. IEEE (2016)Google Scholar
  12. 12.
    Emms, D., Severini, S., Wilson, R.C., Hancock, E.R.: Coined quantum walks lift the cospectrality of graphs and trees. Pattern Recogn. 42(9), 1988–2002 (2009)CrossRefGoogle Scholar
  13. 13.
    Fang, Y., Xie, J., Dai, G., Wang, M., Zhu, F., Xu, T., Wong, E.: 3D deep shape descriptor. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2319–2328 (2015)Google Scholar
  14. 14.
    Gasparetto, A., Minello, G., Torsello, A.: Non-parametric spectral model for shape retrieval. In: 2015 International Conference on 3D Vision, pp. 344–352. IEEE (2015)Google Scholar
  15. 15.
    Godsil, C.: Average mixing of continuous quantum walks. J. Comb. Theor. Ser. A 120(7), 1649–1662 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Huang, H., Kalogerakis, E., Chaudhuri, S., Ceylan, D., Kim, V.G., Yumer, E.: Learning local shape descriptors from part correspondences with multiview convolutional networks. ACM Trans. Graph. (TOG) 37(1), 6 (2018)Google Scholar
  17. 17.
    Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44(4), 307–327 (2003)CrossRefGoogle Scholar
  18. 18.
    Kim, V.G., Lipman, Y., Funkhouser, T.: Blended intrinsic maps. ACM Trans. Graph. (TOG) 30, 79 (2011). ACMGoogle Scholar
  19. 19.
    Levy, B.: Laplace-Beltrami eigenfunctions towards an algorithm that “understands” geometry. In: IEEE International Conference on Shape Modeling and Applications 2006 (SMI 2006), p. 13. IEEE (2006)Google Scholar
  20. 20.
    Litman, R., Bronstein, A.M.: Learning spectral descriptors for deformable shape correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 171–180 (2013)CrossRefGoogle Scholar
  21. 21.
    Masci, J., Boscaini, D., Bronstein, M., Vandergheynst, P.: Geodesic convolutional neural networks on Riemannian manifolds. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 37–45 (2015)Google Scholar
  22. 22.
    Minello, G., Rossi, L., Torsello, A.: Can a quantum walk tell which is which? A study of quantum walk-based graph similarity. Entropy 21(3), 328 (2019)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Reuter, M., Wolter, F.E., Peinecke, N.: Laplace-spectra as fingerprints for shape matching. In: Proceedings of the 2005 ACM Symposium on Solid and Physical Modeling, pp. 101–106. ACM (2005)Google Scholar
  24. 24.
    Rodola, E., et al.: Shrec’17: deformable shape retrieval with missing parts. In: Proceedings of the Eurographics Workshop on 3D Object Retrieval, Lisbon, Portugal, pp. 23–24 (2017)Google Scholar
  25. 25.
    Rodolà, E., Cosmo, L., Bronstein, M.M., Torsello, A., Cremers, D.: Partial functional correspondence. Comput. Graph. Forum 36, 222–236 (2017). Wiley Online LibraryCrossRefGoogle Scholar
  26. 26.
    Rossi, L., Severini, S., Torsello, A.: The average mixing matrix signature. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F., Wilson, R. (eds.) S+SSPR 2016. LNCS, vol. 10029, pp. 474–484. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49055-7_42CrossRefGoogle Scholar
  27. 27.
    Rossi, L., Torsello, A., Hancock, E.R.: A continuous-time quantum walk kernel for unattributed graphs. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 101–110. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38221-5_11CrossRefGoogle Scholar
  28. 28.
    Rossi, L., Torsello, A., Hancock, E.R.: Measuring graph similarity through continuous-time quantum walks and the quantum Jensen-Shannon divergence. Phys. Rev. E 91(2), 022815 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Rossi, L., Torsello, A., Hancock, E.R., Wilson, R.C.: Characterizing graph symmetries through quantum Jensen-Shannon divergence. Phys. Rev. E 88(3), 032806 (2013)CrossRefGoogle Scholar
  30. 30.
    Rostami, R., Bashiri, F.S., Rostami, B., Yu, Z.: A survey on data-driven 3D shape descriptors. Comput. Graph. Forum 38, 356–393 (2019). Wiley Online LibraryCrossRefGoogle Scholar
  31. 31.
    Rustamov, R.M.: Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In: Proceedings of the Fifth Eurographics Symposium on Geometry Processing, pp. 225–233. Eurographics Association (2007)Google Scholar
  32. 32.
    Salti, S., Tombari, F., di Stefano, L.: Shot: unique signatures of histograms for surface and texture description. Comput. Vis. Image Underst. 125, 251–264 (2014)CrossRefGoogle Scholar
  33. 33.
    Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. Comput. Graph. Forum 28, 1383–1392 (2009). Wiley Online LibraryCrossRefGoogle Scholar
  34. 34.
    Verma, N., Boyer, E., Verbeek, J.: Feastnet: feature-steered graph convolutions for 3D shape analysis. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018Google Scholar
  35. 35.
    Vestner, M., et al.: Efficient deformable shape correspondence via kernel matching. In: 2017 International Conference on 3D Vision (3DV), pp. 517–526. IEEE (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Sapienza University of RomeRomeItaly
  2. 2.University of LuganoLuganoSwitzerland
  3. 3.Università Ca’ Foscari VeneziaVeniceItaly
  4. 4.Imperial College LondonLondonUK
  5. 5.TwitterLondonUK
  6. 6.Queen Mary University of LondonLondonUK

Personalised recommendations