Advertisement

Dual Refinement Underwater Object Detection Network

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12365)

Abstract

Due to the complex underwater environment, underwater imaging often encounters some problems such as blur, scale variation, color shift, and texture distortion. Generic detection algorithms can not work well when we use them directly in the underwater scene. To address these problems, we propose an underwater detection framework with feature enhancement and anchor refinement. It has a composite connection backbone to boost the feature representation and introduces a receptive field augmentation module to exploit multi-scale contextual features. The developed underwater object detection framework also provides a prediction refinement scheme according to six prediction layers, it can refine multi-scale features to better align with anchors by learning from offsets, which solve the problem of sample imbalance to a certain extent. We also construct a new underwater detection dataset, denoted as UWD, which has more than 10,000 train-val and test underwater images. The extensive experiments on PASCAL VOC and UWD demonstrate the favorable performance of the proposed underwater detection framework against the states-of-the-arts methods in terms of accuracy and robustness. Source code and models are available at: https://github.com/Peterchen111/FERNet.

Keywords

Underwater object detection Feature enhancement Anchor refinement Underwater dataset 

Notes

Acknowledgments

This work is supported by the Ministry of Science and Technology of the People’s Republic of China (2019YFB1310300), National Natural Science Foundation of China (No. 61876092), State Key Laboratory of Robotics (No. 2019-O07) and State Key Laboratory of Integrated Service Network (ISN20-08).

References

  1. 1.
    Cao, J., Pang, Y., Li, X.: Triply supervised decoder networks for joint detection and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7392–7401 (2019)Google Scholar
  2. 2.
    Chen, X., Lu, Y., Wu, Z., Yu, J., Wen, L.: Reveal of domain effect: how visual restoration contributes to object detection in aquatic scenes. arXiv. Computer Vision and Pattern Recognition (2020)Google Scholar
  3. 3.
    Chen, Y., Han, C., Wang, N., Zhang, Z.: Revisiting feature alignment for one-stage object detection. arXiv preprint arXiv:1908.01570 (2019)
  4. 4.
    Chen, Z., Zhang, Z., Dai, F., Bu, Y., Wang, H.: Monocular vision-based underwater object detection. Sensors 17(8), 1784 (2017)CrossRefGoogle Scholar
  5. 5.
    Cong, Y., Fan, B., Hou, D., Fan, H., Liu, K., Luo, J.: Novel event analysis for human-machine collaborative underwater exploration. Pattern Recogn. 96, 106967 (2019)CrossRefGoogle Scholar
  6. 6.
    Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, pp. 379–387 (2016)Google Scholar
  7. 7.
    Dai, J., et al.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 764–773 (2017)Google Scholar
  8. 8.
    Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)Google Scholar
  9. 9.
    Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010).  https://doi.org/10.1007/s11263-009-0275-4CrossRefGoogle Scholar
  10. 10.
    Galceran, E., Djapic, V., Carreras, M., Williams, D.P.: A real-time underwater object detection algorithm for multi-beam forward looking sonar. IFAC Proc. Vol. 45(5), 306–311 (2012)CrossRefGoogle Scholar
  11. 11.
    He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)Google Scholar
  12. 12.
    Henriksen, L.: Real-time underwater object detection based on an electrically scanned high-resolution sonar. In: Proceedings of IEEE Symposium on Autonomous Underwater Vehicle Technology (AUV 1994), pp. 99–104. IEEE (1995)Google Scholar
  13. 13.
    Li, C., Anwar, S., Porikli, F.: Underwater scene prior inspired deep underwater image and video enhancement. Pattern Recogn. 98, 107038 (2020)CrossRefGoogle Scholar
  14. 14.
    Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)Google Scholar
  15. 15.
    Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)Google Scholar
  16. 16.
    Lin, W.H., Zhong, J.X., Liu, S., Li, T., Li, G.: RoIMix: proposal-fusion among multiple images for underwater object detection. arXiv preprint arXiv:1911.03029 (2019)
  17. 17.
    Liu, S., Huang, D., Wang, Y.: Receptive field block net for accurate and fast object detection. arXiv preprint arXiv:1711.07767 (2017)
  18. 18.
    Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46448-0_2CrossRefGoogle Scholar
  19. 19.
    Liu, Y., et al.: CBNet: a novel composite backbone network architecture for object detection. arXiv preprint arXiv:1909.03625 (2019)
  20. 20.
    Lv, X., Wang, A., Liu, Q., Sun, J., Zhang, S.: Proposal-refined weakly supervised object detection in underwater images. In: Zhao, Y., Barnes, N., Chen, B., Westermann, R., Kong, X., Lin, C. (eds.) ICIG 2019. LNCS, vol. 11901, pp. 418–428. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-34120-6_34CrossRefGoogle Scholar
  21. 21.
    Mullen, L.J., et al.: Modulated laser line scanner for enhanced underwater imaging. In: Airborne and In-Water Underwater Imaging, vol. 3761, pp. 2–9. International Society for Optics and Photonics (1999)Google Scholar
  22. 22.
    Pang, Y., Wang, T., Anwer, R.M., Khan, F.S., Shao, L.: Efficient featurized image pyramid network for single shot detector. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7336–7344 (2019)Google Scholar
  23. 23.
    Purkait, P., Zhao, C., Zach, C.: SPP-Net: deep absolute pose regression with synthetic views. arXiv preprint arXiv:1712.03452 (2017)
  24. 24.
    Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)Google Scholar
  25. 25.
    Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
  26. 26.
    Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)Google Scholar
  27. 27.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014)Google Scholar
  28. 28.
    Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, Inception-ResNet and the impact of residual connections on learning. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)Google Scholar
  29. 29.
    Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9627–9636 (2019)Google Scholar
  30. 30.
    Touretzky, D.S., Mozer, M.C., Hasselmo, M.E.: Advances in Neural Information Processing Systems 8: Proceedings of the 1995 Conference, vol. 8. MIT Press, Cambridge (1996)Google Scholar
  31. 31.
    Wong, A., Famuori, M., Shafiee, M.J., Li, F., Chwyl, B., Chung, J.: YOLO Nano: a highly compact you only look once convolutional neural network for object detection. arXiv preprint arXiv:1910.01271 (2019)
  32. 32.
    Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)Google Scholar
  33. 33.
    Yang, Z., Liu, S., Hu, H., Wang, L., Lin, S.: RepPoints: point set representation for object detection, pp. 9657–9666 (2019)Google Scholar
  34. 34.
    Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)
  35. 35.
    Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: Mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)
  36. 36.
    Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z.: Single-shot refinement neural network for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4203–4212 (2018)Google Scholar
  37. 37.
    Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. arXiv preprint arXiv:1708.04896 (2017)
  38. 38.
    Zhu, R., et al.: ScratchDet: training single-shot object detectors from scratch. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2268–2277 (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.College of Automation and College of Artificial IntelligenceNanjing University of Posts and TelecommunicationsNanjingChina
  2. 2.Shenyang Institute of Automation (SIA)Chinese Academy of SciencesShenyangChina

Personalised recommendations