Skip to main content

Dual Refinement Underwater Object Detection Network

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12365))

Included in the following conference series:

Abstract

Due to the complex underwater environment, underwater imaging often encounters some problems such as blur, scale variation, color shift, and texture distortion. Generic detection algorithms can not work well when we use them directly in the underwater scene. To address these problems, we propose an underwater detection framework with feature enhancement and anchor refinement. It has a composite connection backbone to boost the feature representation and introduces a receptive field augmentation module to exploit multi-scale contextual features. The developed underwater object detection framework also provides a prediction refinement scheme according to six prediction layers, it can refine multi-scale features to better align with anchors by learning from offsets, which solve the problem of sample imbalance to a certain extent. We also construct a new underwater detection dataset, denoted as UWD, which has more than 10,000 train-val and test underwater images. The extensive experiments on PASCAL VOC and UWD demonstrate the favorable performance of the proposed underwater detection framework against the states-of-the-arts methods in terms of accuracy and robustness. Source code and models are available at: https://github.com/Peterchen111/FERNet.

B. Fan and W. Chen—The first two authors contribute equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Datasets Annotation Tool. https://github.com/tzutalin/labelImg.

  2. 2.

    Underwater Robot Picking Contest. http://www.cnurpc.org/.

References

  1. Cao, J., Pang, Y., Li, X.: Triply supervised decoder networks for joint detection and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7392–7401 (2019)

    Google Scholar 

  2. Chen, X., Lu, Y., Wu, Z., Yu, J., Wen, L.: Reveal of domain effect: how visual restoration contributes to object detection in aquatic scenes. arXiv. Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  3. Chen, Y., Han, C., Wang, N., Zhang, Z.: Revisiting feature alignment for one-stage object detection. arXiv preprint arXiv:1908.01570 (2019)

  4. Chen, Z., Zhang, Z., Dai, F., Bu, Y., Wang, H.: Monocular vision-based underwater object detection. Sensors 17(8), 1784 (2017)

    Article  Google Scholar 

  5. Cong, Y., Fan, B., Hou, D., Fan, H., Liu, K., Luo, J.: Novel event analysis for human-machine collaborative underwater exploration. Pattern Recogn. 96, 106967 (2019)

    Article  Google Scholar 

  6. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, pp. 379–387 (2016)

    Google Scholar 

  7. Dai, J., et al.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 764–773 (2017)

    Google Scholar 

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  9. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010). https://doi.org/10.1007/s11263-009-0275-4

    Article  Google Scholar 

  10. Galceran, E., Djapic, V., Carreras, M., Williams, D.P.: A real-time underwater object detection algorithm for multi-beam forward looking sonar. IFAC Proc. Vol. 45(5), 306–311 (2012)

    Article  Google Scholar 

  11. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  12. Henriksen, L.: Real-time underwater object detection based on an electrically scanned high-resolution sonar. In: Proceedings of IEEE Symposium on Autonomous Underwater Vehicle Technology (AUV 1994), pp. 99–104. IEEE (1995)

    Google Scholar 

  13. Li, C., Anwar, S., Porikli, F.: Underwater scene prior inspired deep underwater image and video enhancement. Pattern Recogn. 98, 107038 (2020)

    Article  Google Scholar 

  14. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  15. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  16. Lin, W.H., Zhong, J.X., Liu, S., Li, T., Li, G.: RoIMix: proposal-fusion among multiple images for underwater object detection. arXiv preprint arXiv:1911.03029 (2019)

  17. Liu, S., Huang, D., Wang, Y.: Receptive field block net for accurate and fast object detection. arXiv preprint arXiv:1711.07767 (2017)

  18. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  19. Liu, Y., et al.: CBNet: a novel composite backbone network architecture for object detection. arXiv preprint arXiv:1909.03625 (2019)

  20. Lv, X., Wang, A., Liu, Q., Sun, J., Zhang, S.: Proposal-refined weakly supervised object detection in underwater images. In: Zhao, Y., Barnes, N., Chen, B., Westermann, R., Kong, X., Lin, C. (eds.) ICIG 2019. LNCS, vol. 11901, pp. 418–428. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34120-6_34

    Chapter  Google Scholar 

  21. Mullen, L.J., et al.: Modulated laser line scanner for enhanced underwater imaging. In: Airborne and In-Water Underwater Imaging, vol. 3761, pp. 2–9. International Society for Optics and Photonics (1999)

    Google Scholar 

  22. Pang, Y., Wang, T., Anwer, R.M., Khan, F.S., Shao, L.: Efficient featurized image pyramid network for single shot detector. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7336–7344 (2019)

    Google Scholar 

  23. Purkait, P., Zhao, C., Zach, C.: SPP-Net: deep absolute pose regression with synthetic views. arXiv preprint arXiv:1712.03452 (2017)

  24. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

    Google Scholar 

  25. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  26. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  27. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014)

    Google Scholar 

  28. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, Inception-ResNet and the impact of residual connections on learning. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  29. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9627–9636 (2019)

    Google Scholar 

  30. Touretzky, D.S., Mozer, M.C., Hasselmo, M.E.: Advances in Neural Information Processing Systems 8: Proceedings of the 1995 Conference, vol. 8. MIT Press, Cambridge (1996)

    Google Scholar 

  31. Wong, A., Famuori, M., Shafiee, M.J., Li, F., Chwyl, B., Chung, J.: YOLO Nano: a highly compact you only look once convolutional neural network for object detection. arXiv preprint arXiv:1910.01271 (2019)

  32. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)

    Google Scholar 

  33. Yang, Z., Liu, S., Hu, H., Wang, L., Lin, S.: RepPoints: point set representation for object detection, pp. 9657–9666 (2019)

    Google Scholar 

  34. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)

  35. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: Mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  36. Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z.: Single-shot refinement neural network for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4203–4212 (2018)

    Google Scholar 

  37. Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. arXiv preprint arXiv:1708.04896 (2017)

  38. Zhu, R., et al.: ScratchDet: training single-shot object detectors from scratch. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2268–2277 (2019)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Ministry of Science and Technology of the People’s Republic of China (2019YFB1310300), National Natural Science Foundation of China (No. 61876092), State Key Laboratory of Robotics (No. 2019-O07) and State Key Laboratory of Integrated Service Network (ISN20-08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baojie Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fan, B., Chen, W., Cong, Y., Tian, J. (2020). Dual Refinement Underwater Object Detection Network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12365. Springer, Cham. https://doi.org/10.1007/978-3-030-58565-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58565-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58564-8

  • Online ISBN: 978-3-030-58565-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics