Skip to main content

The Average Mixing Kernel Signature

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12365))

Included in the following conference series:

Abstract

We introduce the Average Mixing Kernel Signature (AMKS), a novel signature for points on non-rigid three-dimensional shapes based on the average mixing kernel and continuous-time quantum walks. The average mixing kernel holds information on the average transition probabilities of a quantum walk between each pair of vertices of the mesh until a time T. We define the AMKS by decomposing the spectral contributions of the kernel into several bands, allowing us to limit the influence of noise-dominated high-frequency components and obtain a more descriptive signature. We also show through a perturbation theory analysis of the kernel that choosing a finite stopping time T leads to noise and deformation robustness for the AMKS. We perform an extensive experimental evaluation on two widely used shape matching datasets under varying level of noise, showing that the AMKS outperforms two state-of-the-art descriptors, namely the Heat Kernel Signature (HKS) and the similarly quantum-walk based Wave Kernel Signature (WKS) .

L. Cosmo and G. Minello—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/lcosmo/amks-descriptor.

References

  1. Aubry, M., Schlickewei, U., Cremers, D.: Pose-consistent 3D shape segmentation based on a quantum mechanical feature descriptor. In: Mester, R., Felsberg, M. (eds.) DAGM 2011. LNCS, vol. 6835, pp. 122–131. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23123-0_13

    Chapter  Google Scholar 

  2. Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: a quantum mechanical approach to shape analysis. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1626–1633. IEEE (2011)

    Google Scholar 

  3. Bai, L., Rossi, L., Torsello, A., Hancock, E.R.: A quantum Jensen-Shannon graph kernel for unattributed graphs. Pattern Recogn. 48(2), 344–355 (2015)

    Article  Google Scholar 

  4. Bogo, F., Romero, J., Loper, M., Black, M.J.: Faust: dataset and evaluation for 3D mesh registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3794–3801 (2014)

    Google Scholar 

  5. Boscaini, D., Masci, J., Rodolà, E., Bronstein, M.M., Cremers, D.: Anisotropic diffusion descriptors. Comput. Graph. Forum 35, 431–441 (2016). Wiley Online Library

    Article  Google Scholar 

  6. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical Geometry of Non-Rigid Shapes. Springer, New York (2008)

    MATH  Google Scholar 

  7. Bronstein, M.M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid shape recognition. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1704–1711. IEEE (2010)

    Google Scholar 

  8. Corman, É., Ovsjanikov, M., Chambolle, A.: Supervised descriptor learning for non-rigid shape matching. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8928, pp. 283–298. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16220-1_20

    Chapter  Google Scholar 

  9. Cosmo, L., Rodola, E., Albarelli, A., Mémoli, F., Cremers, D.: Consistent partial matching of shape collections via sparse modeling. Comput. Graph. Forum 36, 209–221 (2017). Wiley Online Library

    Article  Google Scholar 

  10. Cosmo, L., Rodolà, E., Bronstein, M.M., Torsello, A., Cremers, D., Sahillioglu, Y.: Shrec’16: partial matching of deformable shapes. In: Proceedings of the 3DOR, vol. 2(9), p. 12 (2016)

    Google Scholar 

  11. Cosmo, L., Rodola, E., Masci, J., Torsello, A., Bronstein, M.M.: Matching deformable objects in clutter. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 1–10. IEEE (2016)

    Google Scholar 

  12. Emms, D., Severini, S., Wilson, R.C., Hancock, E.R.: Coined quantum walks lift the cospectrality of graphs and trees. Pattern Recogn. 42(9), 1988–2002 (2009)

    Article  Google Scholar 

  13. Fang, Y., Xie, J., Dai, G., Wang, M., Zhu, F., Xu, T., Wong, E.: 3D deep shape descriptor. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2319–2328 (2015)

    Google Scholar 

  14. Gasparetto, A., Minello, G., Torsello, A.: Non-parametric spectral model for shape retrieval. In: 2015 International Conference on 3D Vision, pp. 344–352. IEEE (2015)

    Google Scholar 

  15. Godsil, C.: Average mixing of continuous quantum walks. J. Comb. Theor. Ser. A 120(7), 1649–1662 (2013)

    Article  MathSciNet  Google Scholar 

  16. Huang, H., Kalogerakis, E., Chaudhuri, S., Ceylan, D., Kim, V.G., Yumer, E.: Learning local shape descriptors from part correspondences with multiview convolutional networks. ACM Trans. Graph. (TOG) 37(1), 6 (2018)

    Google Scholar 

  17. Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44(4), 307–327 (2003)

    Article  Google Scholar 

  18. Kim, V.G., Lipman, Y., Funkhouser, T.: Blended intrinsic maps. ACM Trans. Graph. (TOG) 30, 79 (2011). ACM

    Google Scholar 

  19. Levy, B.: Laplace-Beltrami eigenfunctions towards an algorithm that “understands” geometry. In: IEEE International Conference on Shape Modeling and Applications 2006 (SMI 2006), p. 13. IEEE (2006)

    Google Scholar 

  20. Litman, R., Bronstein, A.M.: Learning spectral descriptors for deformable shape correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 171–180 (2013)

    Article  Google Scholar 

  21. Masci, J., Boscaini, D., Bronstein, M., Vandergheynst, P.: Geodesic convolutional neural networks on Riemannian manifolds. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 37–45 (2015)

    Google Scholar 

  22. Minello, G., Rossi, L., Torsello, A.: Can a quantum walk tell which is which? A study of quantum walk-based graph similarity. Entropy 21(3), 328 (2019)

    Article  MathSciNet  Google Scholar 

  23. Reuter, M., Wolter, F.E., Peinecke, N.: Laplace-spectra as fingerprints for shape matching. In: Proceedings of the 2005 ACM Symposium on Solid and Physical Modeling, pp. 101–106. ACM (2005)

    Google Scholar 

  24. Rodola, E., et al.: Shrec’17: deformable shape retrieval with missing parts. In: Proceedings of the Eurographics Workshop on 3D Object Retrieval, Lisbon, Portugal, pp. 23–24 (2017)

    Google Scholar 

  25. Rodolà, E., Cosmo, L., Bronstein, M.M., Torsello, A., Cremers, D.: Partial functional correspondence. Comput. Graph. Forum 36, 222–236 (2017). Wiley Online Library

    Article  Google Scholar 

  26. Rossi, L., Severini, S., Torsello, A.: The average mixing matrix signature. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F., Wilson, R. (eds.) S+SSPR 2016. LNCS, vol. 10029, pp. 474–484. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49055-7_42

    Chapter  Google Scholar 

  27. Rossi, L., Torsello, A., Hancock, E.R.: A continuous-time quantum walk kernel for unattributed graphs. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 101–110. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38221-5_11

    Chapter  Google Scholar 

  28. Rossi, L., Torsello, A., Hancock, E.R.: Measuring graph similarity through continuous-time quantum walks and the quantum Jensen-Shannon divergence. Phys. Rev. E 91(2), 022815 (2015)

    Article  MathSciNet  Google Scholar 

  29. Rossi, L., Torsello, A., Hancock, E.R., Wilson, R.C.: Characterizing graph symmetries through quantum Jensen-Shannon divergence. Phys. Rev. E 88(3), 032806 (2013)

    Article  Google Scholar 

  30. Rostami, R., Bashiri, F.S., Rostami, B., Yu, Z.: A survey on data-driven 3D shape descriptors. Comput. Graph. Forum 38, 356–393 (2019). Wiley Online Library

    Article  Google Scholar 

  31. Rustamov, R.M.: Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In: Proceedings of the Fifth Eurographics Symposium on Geometry Processing, pp. 225–233. Eurographics Association (2007)

    Google Scholar 

  32. Salti, S., Tombari, F., di Stefano, L.: Shot: unique signatures of histograms for surface and texture description. Comput. Vis. Image Underst. 125, 251–264 (2014)

    Article  Google Scholar 

  33. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. Comput. Graph. Forum 28, 1383–1392 (2009). Wiley Online Library

    Article  Google Scholar 

  34. Verma, N., Boyer, E., Verbeek, J.: Feastnet: feature-steered graph convolutions for 3D shape analysis. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  35. Vestner, M., et al.: Efficient deformable shape correspondence via kernel matching. In: 2017 International Conference on 3D Vision (3DV), pp. 517–526. IEEE (2017)

    Google Scholar 

Download references

Acknowledgements

Luca Cosmo was supported by the ERC Starting Grant No. 802554 (SPECGEO) and the ERC Consolidator grant No. 724228 (LEMAN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Rossi .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 181 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cosmo, L., Minello, G., Bronstein, M., Rossi, L., Torsello, A. (2020). The Average Mixing Kernel Signature. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12365. Springer, Cham. https://doi.org/10.1007/978-3-030-58565-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58565-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58564-8

  • Online ISBN: 978-3-030-58565-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics