Skip to main content

SRFlow: Learning the Super-Resolution Space with Normalizing Flow

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12350))

Included in the following conference series:

Abstract

Super-resolution is an ill-posed problem, since it allows for multiple predictions for a given low-resolution image. This fundamental fact is largely ignored by state-of-the-art deep learning based approaches. These methods instead train a deterministic mapping using combinations of reconstruction and adversarial losses. In this work, we therefore propose SRFlow: a normalizing flow based super-resolution method capable of learning the conditional distribution of the output given the low-resolution input. Our model is trained in a principled manner using a single loss, namely the negative log-likelihood. SRFlow therefore directly accounts for the ill-posed nature of the problem, and learns to predict diverse photo-realistic high-resolution images. Moreover, we utilize the strong image posterior learned by SRFlow to design flexible image manipulation techniques, capable of enhancing super-resolved images by, e.g., transferring content from other images. We perform extensive experiments on faces, as well as on super-resolution in general. SRFlow outperforms state-of-the-art GAN-based approaches in terms of both PSNR and perceptual quality metrics, while allowing for diversity through the exploration of the space of super-resolved solutions. Code: git.io/Jfpyu.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agustsson, E., Timofte, R.: Ntire 2017 challenge on single image super-resolution: dataset and study. In: CVPR Workshops (2017)

    Google Scholar 

  2. Ahn, N., Kang, B., Sohn, K.A.: Image super-resolution via progressive cascading residual network. In: CVPR (2018)

    Google Scholar 

  3. Ardizzone, L., Lüth, C., Kruse, J., Rother, C., Köthe, U.: Guided image generation with conditional invertible neural networks. CoRR abs/1907.02392 (2019). http://arxiv.org/abs/1907.02392

  4. Bahat, Y., Michaeli, T.: Explorable super resolution. arXiv.vol. abs/1912.01839 (2019)

  5. Behrmann, J., Grathwohl, W., Chen, R.T.Q., Duvenaud, D., Jacobsen, J.: Invertible residual networks. In: ICML. Proceedings of Machine Learning Research, vol. 97, pp. 573–582. PMLR (2019)

    Google Scholar 

  6. Bell-Kligler, S., Shocher, A., Irani, M.: Blind super-resolution kernel estimation using an internal-gan. In: NeurIPS, pp. 284–293 (2019). http://papers.nips.cc/paper/8321-blind-super-resolution-kernel-estimation-using-an-internal-gan

  7. Bühler, M.C., Romero, A., Timofte, R.: Deepsee: deep disentangled semantic explorative extreme super-resolution. arXiv preprint arXiv:2004.04433 (2020)

  8. Dai, D., Timofte, R., Gool, L.V.: Jointly optimized regressors for image super-resolution. Comput. Graph. Forum 34(2), 95–104 (2015). https://doi.org/10.1111/cgf.12544

    Article  Google Scholar 

  9. Dinh, L., Krueger, D., Bengio, Y.: NICE: non-linear independent components estimation. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Workshop Track Proceedings (2015)

    Google Scholar 

  10. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real NVP. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017, Conference Track Proceedings (2017)

    Google Scholar 

  11. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: ECCV, pp. 184–199 (2014). https://doi.org/10.1007/978-3-319-10593-2_13

  12. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. TPAMI 38(2), 295–307 (2016)

    Article  Google Scholar 

  13. Durkan, C., Bekasov, A., Murray, I., Papamakarios, G.: Neural spline flows. In: Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8–14 December 2019, Vancouver, BC, Canada, pp. 7509–7520 (2019)

    Google Scholar 

  14. Goodfellow, I.J., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, 8–13 December 2014, Montreal, Quebec, Canada, pp. 2672–2680 (2014)

    Google Scholar 

  15. Haris, M., Shakhnarovich, G., Ukita, N.: Deep back-projection networks for super-resolution. In: CVPR (2018)

    Google Scholar 

  16. Ignatov, A., et al.: Pirm challenge on perceptual image enhancement on smartphones: report. arXiv preprint arXiv:1810.01641 (2018)

  17. Isola, P., Zhu, J., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR, pp. 5967–5976 (2017). https://doi.org/10.1109/CVPR.2017.632

  18. Kim, D., Kim, M., Kwon, G., Kim, D.: Progressive face super-resolution via attention to facial landmark. In: arxiv. vol. abs/1908.08239 (2019)

    Google Scholar 

  19. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: CVPR (2016)

    Google Scholar 

  20. Kingma, D.P., Dhariwal, P.: Glow: Generative flow with invertible 1x1 convolutions. In: Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3–8 December 2018, Montréal, Canada, pp. 10236–10245 (2018)

    Google Scholar 

  21. Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Deep laplacian pyramid networks for fast and accurate super-resolution. In: CVPR (2017)

    Google Scholar 

  22. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR (2017)

    Google Scholar 

  23. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. In: CVPR (2017)

    Google Scholar 

  24. Liu, R., Liu, Y., Gong, X., Wang, X., Li, H.: Conditional adversarial generative flow for controllable image synthesis. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 7992–8001 (2019)

    Google Scholar 

  25. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of International Conference on Computer Vision (ICCV), December 2015

    Google Scholar 

  26. Lugmayr, A., Danelljan, M., Timofte, R.: Unsupervised learning for real-world super-resolution. In: ICCVW, pp. 3408–3416. IEEE (2019)

    Google Scholar 

  27. Lugmayr, A., Danelljan, M., Timofte, R.: Ntire 2020 challenge on real-world image super-resolution: methods and results. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2020

    Google Scholar 

  28. Lugmayr, A., Danelljan, M., Timofte, R., et al.: Aim 2019 challenge on real-world image super-resolution: methods and results. In: ICCV Workshops (2019)

    Google Scholar 

  29. Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond mean square error. In: ICLR (2016). http://arxiv.org/abs/1511.05440

  30. Menon, S., Damian, A., Hu, S., Ravi, N., Rudin, C.: Pulse: self-supervised photo upsampling via latent space exploration of generative models. In: CVPR (2020)

    Google Scholar 

  31. Mittal, A., Moorthy, A., Bovik, A.: Referenceless image spatial quality evaluation engine. In: 45th Asilomar Conference on Signals, Systems and Computers, vol. 38, pp. 53–54 (2011)

    Google Scholar 

  32. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind” image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2013)

    Article  Google Scholar 

  33. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. The MIT Press, Cambridge (2012)

    MATH  Google Scholar 

  34. Venkatanath, N., Praneeth, D., Bh, M.C., Channappayya, S.S., Medasani, S.S: Blind image quality evaluation using perception based features. In: NCC, pp. 1–6. IEEE (2015)

    Google Scholar 

  35. Pathak, D., Krähenbühl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: CVPR, pp. 2536–2544. IEEE Computer Society (2016)

    Google Scholar 

  36. Pumarola, A., Popov, S., Moreno-Noguer, F., Ferrari, V.: C-flow: conditional generative flow models for images and 3d point clouds. In: CVPR, pp. 7949–7958 (2020)

    Google Scholar 

  37. Rezende, D.J., Mohamed, S.: Variational inference with normalizing flows. In: Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6–11 July 2015, pp. 1530–1538 (2015)

    Google Scholar 

  38. Sajjadi, M.S.M., Schölkopf, B., Hirsch, M.: Enhancenet: single image super-resolution through automated texture synthesis. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, 22–29 October 2017, pp. 4501–4510. IEEE Computer Society (2017). https://doi.org/10.1109/ICCV.2017.481

  39. Shaham, T.R., Dekel, T., Michaeli, T.: Singan: learning a generative model from a single natural image. In: ICCV, pp. 4570–4580 (2019)

    Google Scholar 

  40. Shocher, A., Cohen, N., Irani, M.: Zero-shot super-resolution using deep internal learning. In: CVPR (2018)

    Google Scholar 

  41. Sun, L., Hays, J.: Super-resolution from internet-scale scene matching. In: ICCP (2012)

    Google Scholar 

  42. Timofte, R., et al.: Ntire 2017 challenge on single image super-resolution: methods and results. In: CVPR Workshops (2017)

    Google Scholar 

  43. Timofte, R., De Smet, V., Van Gool, L.: A+: adjusted anchored neighborhood regression for fast super-resolution. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 111–126. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16817-3_8

    Chapter  Google Scholar 

  44. Timofte, R., Gu, S., Wu, J., Van Gool, L.: Ntire 2018 challenge on single image super-resolution: methods and results. In: CVPR Workshops (2018)

    Google Scholar 

  45. Timofte, R., Smet, V.D., Gool, L.V.: Anchored neighborhood regression for fast example-based super-resolution. In: ICCV, pp. 1920–1927 (2013). https://doi.org/10.1109/ICCV.2013.241

  46. Wang, X., et al.: Esrgan: Enhanced super-resolution generative adversarial networks. ECCV (2018)

    Google Scholar 

  47. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  48. Winkler, C., Worrall, D.E., Hoogeboom, E., Welling, M.: Learning likelihoods with conditional normalizing flows. arxiv abs/1912.00042 (2019). http://arxiv.org/abs/1912.00042

  49. Yang, C., Yang, M.: Fast direct super-resolution by simple functions. In: ICCV, pp. 561–568 (2013). https://doi.org/10.1109/ICCV.2013.75

  50. Yang, G., Huang, X., Hao, Z., Liu, M., Belongie, S.J., Hariharan, B.: Pointflow: 3d point cloud generation with continuous normalizing flows. In: ICCV (2019)

    Google Scholar 

  51. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution as sparse representation of raw image patches. In: CVPR (2008). https://doi.org/10.1109/CVPR.2008.4587647

  52. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010). https://doi.org/10.1109/TIP.2010.2050625

  53. Yu, X., Porikli, F.: Ultra-resolving face images by discriminative generative networks. In: ECCV, pp. 318–333 (2016). https://doi.org/10.1007/978-3-319-46454-1_20

  54. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)

    Google Scholar 

  55. Zhang, W., Liu, Y., Dong, C., Qiao, Y.: Ranksrgan: generative adversarial networks with ranker for image super-resolution (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the ETH Zürich Fund (OK), a Huawei Technologies Oy (Finland) project, a Google GCP grant, an Amazon AWS grant, and an Nvidia GPU grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Lugmayr .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 19090 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lugmayr, A., Danelljan, M., Van Gool, L., Timofte, R. (2020). SRFlow: Learning the Super-Resolution Space with Normalizing Flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12350. Springer, Cham. https://doi.org/10.1007/978-3-030-58558-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58558-7_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58557-0

  • Online ISBN: 978-3-030-58558-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics