Skip to main content

Associative Alignment for Few-Shot Image Classification

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12350))

Included in the following conference series:

Abstract

Few-shot image classification aims at training a model from only a few examples for each of the “novel” classes. This paper proposes the idea of associative alignment for leveraging part of the base data by aligning the novel training instances to the closely related ones in the base training set. This expands the size of the effective novel training set by adding extra “related base” instances to the few novel ones, thereby allowing a constructive fine-tuning. We propose two associative alignment strategies: 1) a metric-learning loss for minimizing the distance between related base samples and the centroid of novel instances in the feature space, and 2) a conditional adversarial alignment loss based on the Wasserstein distance. Experiments on four standard datasets and three backbones demonstrate that combining our centroid-based alignment loss results in absolute accuracy improvements of 4.4%, 1.2%, and 6.2% in 5-shot learning over the state of the art for object recognition, fine-grained classification, and cross-domain adaptation, respectively .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv preprint arXiv:1701.07875 (2017)

  2. Bertinetto, L., Henriques, J.F., Torr, P., Vedaldi, A.: Meta-learning with differentiable closed-form solvers. In: The International Conference on Learning Representations (2019)

    Google Scholar 

  3. Chen, W.Y., Liu, Y.C., Kira, Z., Wang, Y.C.F., Huang, J.B.: A closer look at few-shot classification. arXiv preprint arXiv:1904.04232 (2019)

  4. Chen, Z., Fu, Y., Wang, Y.X., Ma, L., Liu, W., Hebert, M.: Image deformation meta-networks for one-shot learning. In: The Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  5. Chu, W.H., Li, Y.J., Chang, J.C., Wang, Y.C.F.: Spot and learn: a maximum-entropy patch sampler for few-shot image classification. In: The Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  6. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: additive angular margin loss for deep face recognition. In: The Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  7. Dhillon, G.S., Chaudhari, P., Ravichandran, A., Soatto, S.: A baseline for few-shot image classification. arXiv preprint arXiv:1909.02729 (2019)

  8. Dvornik, N., Schmid, C., Mairal, J.: Diversity with cooperation: ensemble methods for few-shot classification. In: The International Conference on Computer Vision (2019)

    Google Scholar 

  9. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: The International Conference on Machine Learning (2017)

    Google Scholar 

  10. Finn, C., Xu, K., Levine, S.: Probabilistic model-agnostic meta-learning. In: Advances in Neural Information Processing Systems (2018)

    Google Scholar 

  11. Gao, H., Shou, Z., Zareian, A., Zhang, H., Chang, S.F.: Low-shot learning via covariance-preserving adversarial augmentation networks. In: Advances in Neural Information Processing Systems (2018)

    Google Scholar 

  12. Garcia, V., Bruna, J.: Few-shot learning with graph neural networks. arXiv preprint arXiv:1711.04043 (2017)

  13. Gidaris, S., Bursuc, A., Komodakis, N., Pérez, P., Cord, M.: Boosting few-shot visual learning with self-supervision. In: The International Conference on Computer Vision (2019)

    Google Scholar 

  14. Gidaris, S., Komodakis, N.: Dynamic few-shot visual learning without forgetting. In: The Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  15. Gidaris, S., Komodakis, N.: Generating classification weights with GNN denoising autoencoders for few-shot learning. arXiv preprint arXiv:1905.01102 (2019)

  16. Gui, L.-Y., Wang, Y.-X., Ramanan, D., Moura, J.M.F.: Few-shot human motion prediction via meta-learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 441–459. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_27

    Chapter  Google Scholar 

  17. Hariharan, B., Girshick, R.: Low-shot visual recognition by shrinking and hallucinating features. In: The International Conference on Computer Vision (2017)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: The Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  19. Hilliard, N., Phillips, L., Howland, S., Yankov, A., Corley, C.D., Hodas, N.O.: Few-shot learning with metric-agnostic conditional embeddings. arXiv preprint arXiv:1802.04376 (2018)

  20. Jiang, H., Wang, R., Shan, S., Chen, X.: Learning class prototypes via structure alignment for zero-shot recognition. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 121–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_8

    Chapter  Google Scholar 

  21. Kim, J., Oh, T.H., Lee, S., Pan, F., Kweon, I.S.: Variational prototyping-encoder: one-shot learning with prototypical images. In: The Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  22. Kim, T., Yoon, J., Dia, O., Kim, S., Bengio, Y., Ahn, S.: Bayesian model-agnostic meta-learning. arXiv preprint arXiv:1806.03836 (2018)

  23. Krizhevsky, A., Nair, V., Hinton, G.: CIFAR-10 and CIFAR-100 datasets (2009). https://www.cs.toronto.edu/kriz/cifar. html

  24. Lee, K., Maji, S., Ravichandran, A., Soatto, S.: Meta-learning with differentiable convex optimization. In: The Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  25. Li, W., Wang, L., Xu, J., Huo, J., Gao, Y., Luo, J.: Revisiting local descriptor based image-to-class measure for few-shot learning. In: The Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  26. Li, X., et al.: Learning to self-train for semi-supervised few-shot classification. In: Advances in Neural Information Processing Systems (2019)

    Google Scholar 

  27. Lifchitz, Y., Avrithis, Y., Picard, S., Bursuc, A.: Dense classification and implanting for few-shot learning. In: The Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  28. Lim, J.J., Salakhutdinov, R.R., Torralba, A.: Transfer learning by borrowing examples for multiclass object detection. In: Advances in Neural Information Processing Systems (2011)

    Google Scholar 

  29. Liu, B., Wu, Z., Hu, H., Lin, S.: Deep metric transfer for label propagation with limited annotated data. In: The IEEE International Conference on Computer Vision (ICCV) Workshops, October 2019

    Google Scholar 

  30. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. Journal of Machine Learning Research 9, 2579–2605 (2008)

    MATH  Google Scholar 

  31. Mehrotra, A., Dukkipati, A.: Generative adversarial residual pairwise networks for one shot learning. arXiv preprint arXiv:1703.08033 (2017)

  32. Mishra, N., Rohaninejad, M., Chen, X., Abbeel, P.: A simple neural attentive meta-learner. arXiv preprint arXiv:1707.03141 (2017)

  33. Oreshkin, B., López, P.R., Lacoste, A.: Tadam: task dependent adaptive metric for improved few-shot learning. In: Advances in Neural Information Processing Systems (2018)

    Google Scholar 

  34. Qi, H., Brown, M., Lowe, D.G.: Low-shot learning with imprinted weights. In: The Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  35. Qiao, S., Liu, C., Shen, W., Yuille, A.L.: Few-shot image recognition by predicting parameters from activations. In: The Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  36. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning (2016)

    Google Scholar 

  37. Ren, M., et al.: Meta-learning for semi-supervised few-shot classification. arXiv preprint arXiv:1803.00676 (2018)

  38. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. (2015)

    Google Scholar 

  39. Rusu, A.A., et al.: Meta-learning with latent embedding optimization. arXiv preprint arXiv:1807.05960 (2018)

  40. Schwartz, E., et al.: Delta-encoder: an effective sample synthesis method for few-shot object recognition. In: Advances in Neural Information Processing Systems (2018)

    Google Scholar 

  41. Sergey, Z., Nikos, K.: Wide residual networks. In: British Machine Vision Conference (2016)

    Google Scholar 

  42. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  43. Sun, Q., Liu, Y., Chua, T.S., Schiele, B.: Meta-transfer learning for few-shot learning. In: The Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  44. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: relation network for few-shot learning. In: The Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  45. Tseng, H.Y., Lee, H.Y., Huang, J.B., Yang, M.H.: Cross-domain few-shot classification via learned feature-wise transformation. arXiv preprint arXiv:2001.08735 (2020)

  46. Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artif. Intell. Rev. (2002)

    Google Scholar 

  47. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: Advances in Neural Information Processing Systems (2016)

    Google Scholar 

  48. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-UCSD birds-200-2011 dataset (2011)

    Google Scholar 

  49. Wang, Y.X., Girshick, R., Hebert, M., Hariharan, B.: Low-shot learning from imaginary data. In: The Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  50. Wang, Y.X., Hebert, M.: Learning from small sample sets by combining unsupervised meta-training with CNNs. In: Advances in Neural Information Processing Systems (2016)

    Google Scholar 

  51. Wang, Y.-X., Hebert, M.: Learning to learn: model regression networks for easy small sample learning. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 616–634. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_37

    Chapter  Google Scholar 

  52. Wang, Y.X., Ramanan, D., Hebert, M.: Meta-learning to detect rare objects. In: The International Conference on Computer Vision (2019)

    Google Scholar 

  53. Wertheimer, D., Hariharan, B.: Few-shot learning with localization in realistic settings. In: The Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  54. Yoon, S.W., Seo, J., Moon, J.: Tapnet: Neural network augmented with task-adaptive projection for few-shot learning. arXiv preprint arXiv:1905.06549 (2019)

  55. Zhang, H., Zhang, J., Koniusz, P.: Few-shot learning via saliency-guided hallucination of samples. In: The Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  56. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  57. Zhang, J., Zhao, C., Ni, B., Xu, M., Yang, X.: Variational few-shot learning. In: The International Conference on Computer Vision (2019)

    Google Scholar 

  58. Zhao, F., Zhao, J., Yan, S., Feng, J.: Dynamic conditional networks for few-shot learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 20–36. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_2

    Chapter  Google Scholar 

  59. Zhu, L., Yang, Y.: Compound memory networks for few-shot video classification. In: The European Conference on Computer Vision (2018)

    Google Scholar 

Download references

Acknowledgement

This project was supported by funding from NSERC-Canada, Mitacs, Prompt-Québec, and E Machine Learning. We thank Ihsen Hedhli, Saed Moradi, Marc-André Gardner, and Annette Schwerdtfeger for proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arman Afrasiyabi .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 354 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Afrasiyabi, A., Lalonde, JF., Gagné, C. (2020). Associative Alignment for Few-Shot Image Classification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12350. Springer, Cham. https://doi.org/10.1007/978-3-030-58558-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58558-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58557-0

  • Online ISBN: 978-3-030-58558-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics