Skip to main content

BLSM: A Bone-Level Skinned Model of the Human Mesh

  • Conference paper
  • First Online:
Book cover Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12350))

Included in the following conference series:

Abstract

We introduce BLSM, a bone-level skinned model of the human body mesh where bone scales are set prior to template synthesis, rather than the common, inverse practice. BLSM first sets bone lengths and joint angles to specify the skeleton, then specifies identity-specific surface variation, and finally bundles them together through linear blend skinning. We design these steps by constraining the joint angles to respect the kinematic constraints of the human body and by using accurate mesh convolution-based networks to capture identity-specific surface variation.

We provide quantitative results on the problem of reconstructing a collection of 3D human scans, and show that we obtain improvements in reconstruction accuracy when comparing to a SMPL-type baseline. Our decoupled bone and shape representation also allows for out-of-box integration with standard graphics packages like Unity, facilitating full-body AR effects and image-driven character animation. Additional results and demos are available from the project webpage: http://arielai.com/blsm .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mixamo (2019). https://www.mixamo.com

  2. Allen, B., Curless, B., Curless, B., Popović, Z.: The space of human body shapes: reconstruction and parameterization from range scans. ACM Trans. Graph. (TOG) 22, 587–594 (2003). ACM

    Article  Google Scholar 

  3. Allen, B., Curless, B., Popović, Z.: Articulated body deformation from range scan data. ACM Trans. Graph. (TOG) 21, 612–619 (2002). ACM

    Article  Google Scholar 

  4. Allen, B., Curless, B., Popović, Z., Hertzmann, A.: Learning a correlated model of identity and pose-dependent body shape variation for real-time synthesis. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 147–156. Eurographics Association (2006)

    Google Scholar 

  5. Amberg, B., Romdhani, S., Vetter, T.: Optimal step nonrigid ICP algorithms for surface registration. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

    Google Scholar 

  6. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape: shape completion and animation of people. ACM Trans. Graph. (TOG) 24, 408–416 (2005)

    Article  Google Scholar 

  7. Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep it SMPL: automatic estimation of 3D human pose and shape from a single image. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 561–578. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_34

    Chapter  Google Scholar 

  8. Bogo, F., Romero, J., Pons-Moll, G., Black, M.J.: Dynamic faust: registering human bodies in motion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6233–6242 (2017)

    Google Scholar 

  9. Boscaini, D., Masci, J., Rodolà, E., Bronstein, M.: Learning shape correspondence with anisotropic convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 3189–3197 (2016)

    Google Scholar 

  10. Bouritsas, G., Bokhnyak, S., Ploumpis, S., Bronstein, M., Zafeiriou, S.: Neural 3D morphable models: spiral convolutional networks for 3D shape representation learning and generation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7213–7222 (2019)

    Google Scholar 

  11. Chen, Y., Liu, Z., Zhang, Z.: Tensor-based human body modeling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 105–112 (2013)

    Google Scholar 

  12. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, pp. 3844–3852 (2016)

    Google Scholar 

  13. Guan, P., Reiss, L., Hirshberg, D.A., Weiss, A., Black, M.J.: Drape: dressing any person

    Google Scholar 

  14. Guler, R.A., Kokkinos, I.: Holopose: holistic 3D human reconstruction in-the-wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10884–10894 (2019)

    Google Scholar 

  15. Hasler, N., Stoll, C., Sunkel, M., Rosenhahn, B., Seidel, H.P.: A statistical model of human pose and body shape. Comput. Graph. Forum 28, 337–346 (2009)

    Article  Google Scholar 

  16. Hirshberg, D.A., Loper, M., Rachlin, E., Black, M.J.: Coregistration: simultaneous alignment and modeling of articulated 3D shape. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 242–255. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_18

    Chapter  Google Scholar 

  17. Joo, H., Simon, T., Sheikh, Y.: Total capture: a 3D deformation model for tracking faces, hands, and bodies. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8320–8329 (2018)

    Google Scholar 

  18. Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  19. Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct 3D human pose and shape via model-fitting in the loop. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2252–2261 (2019)

    Google Scholar 

  20. Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 165–172. ACM Press/Addison-Wesley Publishing Co. (2000)

    Google Scholar 

  21. Li, T., Bolkart, T., Black, M.J., Li, H., Romero, J.: Learning a model of facial shape and expression from 4D scans. ACM Trans. Graph. (TOG) 36(6), 194 (2017)

    Google Scholar 

  22. Lim, I., Dielen, A., Campen, M., Kobbelt, L.: A simple approach to intrinsic correspondence learning on unstructured 3D meshes. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11131, pp. 349–362. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11015-4_26

    Chapter  Google Scholar 

  23. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. (TOG) 34(6), 248 (2015)

    Article  Google Scholar 

  24. Pavlakos, G., et al.: Expressive body capture: 3D hands, face, and body from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  25. Pishchulin, L., Wuhrer, S., Helten, T., Theobalt, C., Schiele, B.: Building statistical shape spaces for 3D human modeling. Pattern Recogn. 67, 276–286 (2017)

    Article  Google Scholar 

  26. Pons-Moll, G., Romero, J., Mahmood, N., Black, M.J.: Dyna: a model of dynamic human shape in motion. ACM Trans. Graph. (TOG) 34(4), 120 (2015)

    Article  Google Scholar 

  27. Ranjan, A., Bolkart, T., Sanyal, S., Black, M.J.: Generating 3D faces using convolutional mesh autoencoders. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 725–741. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_43

    Chapter  Google Scholar 

  28. Robinette, K.M., Blackwell, S., Daanen, H., Boehmer, M., Fleming, S.: Civilian American and European Surface Anthropometry Resource (CAESAR), final report, vol. 1. Summary. Technical report, SYTRONICS INC DAYTON OH (2002)

    Google Scholar 

  29. Romero, J., Tzionas, D., Black, M.J.: Embodied hands: modeling and capturing hands and bodies together. ACM Trans. Graph. (TOG) 36(6), 245 (2017)

    Article  Google Scholar 

  30. Seo, H., Cordier, F., Magnenat-Thalmann, N.: Synthesizing animatable body models with parameterized shape modifications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 120–125. Eurographics Association (2003)

    Google Scholar 

  31. Sumner, R.W., Popović, J.: Deformation transfer for triangle meshes. ACM Trans. Graph. (TOG) 23(3), 399–405 (2004)

    Article  Google Scholar 

  32. Verma, N., Boyer, E., Verbeek, J.: Feastnet: feature-steered graph convolutions for 3D shape analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2598–2606 (2018)

    Google Scholar 

  33. Wang, J., et al.: Neural pose transfer by spatially adaptive instance normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5831–5839 (2020)

    Google Scholar 

Download references

Acknowledgements

The work of S. Zafeiriou and R.A. Guler was funded in part by EPSRC Project EP/S010203/1 DEFORM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoyang Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 59443 KB)

Supplementary material 2 (pdf 4139 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, H., Güler, R.A., Kokkinos, I., Papandreou, G., Zafeiriou, S. (2020). BLSM: A Bone-Level Skinned Model of the Human Mesh. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12350. Springer, Cham. https://doi.org/10.1007/978-3-030-58558-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58558-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58557-0

  • Online ISBN: 978-3-030-58558-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics