Skip to main content

CLIFFNet for Monocular Depth Estimation with Hierarchical Embedding Loss

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

This paper proposes a hierarchical loss for monocular depth estimation, which measures the differences between the prediction and ground truth in hierarchical embedding spaces of depth maps. In order to find an appropriate embedding space, we design different architectures for hierarchical embedding generators (HEGs) and explore relevant tasks to train their parameters. Compared to conventional depth losses manually defined on a per-pixel basis, the proposed hierarchical loss can be learned in a data-driven manner. As verified by our experiments, the hierarchical loss even learned without additional labels can capture multi-scale context information, is more robust to local outliers, and thus delivers superior performance. To further improve depth accuracy, a cross level identity feature fusion network (CLIFFNet) is proposed, where low-level features with finer details are refined using more reliable high-level cues. Through end-to-end training, CLIFFNet can learn to select the optimal combinations of low-level and high-level features, leading to more effective cross level feature fusion. When trained using the proposed hierarchical loss, CLIFFNet sets a new state of the art on popular depth estimation benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We drop the parameter \(\theta \) for notational simplicity.

  2. 2.

    https://github.com/scott89/CLIFFNet.

References

  1. Chakrabarti, A., Shao, J., Shakhnarovich, G.: Depth from a single image by harmonizing over complete local network predictions. In: Lee, D.D., Sugiyama, M., von Luxburg, U., Guyon, I., Garnett, R. (eds.) NIPS, pp. 2658–2666 (2016)

    Google Scholar 

  2. Chen, W., Fu, Z., Yang, D., Deng, J.: Single-image depth perception in the wild. In: NIPS, pp. 730–738 (2016)

    Google Scholar 

  3. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR, pp. 3213–3223 (2016)

    Google Scholar 

  4. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.: ImageNet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)

    Google Scholar 

  5. Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: ICCV, pp. 2650–2658 (2015)

    Google Scholar 

  6. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: NIPS, pp. 2366–2374 (2014)

    Google Scholar 

  7. Fu, H., Gong, M., Wang, C., Batmanghelich, K., Tao, D.: Deep ordinal regression network for monocular depth estimation. In: CVPR, pp. 2002–2011 (2018)

    Google Scholar 

  8. Godard, C., Aodha, O.M., Firman, M., Brostow, G.J.: Digging into self-supervised monocular depth estimation. In: ICCV, pp. 3827–3837 (2019)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  10. Hoiem, D., Efros, A.A., Hebert, M.: Geometric context from a single image. In: ICCV, pp. 654–661 (2005)

    Google Scholar 

  11. Jiao, J., Cao, Y., Song, Y., Lau, R.: Look deeper into depth: monocular depth estimation with semantic booster and attention-driven loss. In: ECCV, pp. 53–69 (2018)

    Google Scholar 

  12. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  14. Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N.: Deeper depth prediction with fully convolutional residual networks. In: 3DV, pp. 239–248 (2016)

    Google Scholar 

  15. Lee, J.H., Heo, M., Kim, K.R., Kim, C.S.: Single-image depth estimation based on Fourier domain analysis. In: CVPR, pp. 330–339 (2018)

    Google Scholar 

  16. Lee, J.H., Kim, C.S.: Monocular depth estimation using relative depth maps. In: CVPR, pp. 9729–9738 (2019)

    Google Scholar 

  17. Li, J., Klein, R., Yao, A.: A two-streamed network for estimating fine-scaled depth maps from single RGB images. In: ICCV, pp. 3372–3380 (2017)

    Google Scholar 

  18. Li, Z., Snavely, N.: MegaDepth: learning single-view depth prediction from internet photos. In: CVPR, pp. 2041–2050 (2018)

    Google Scholar 

  19. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR, pp. 2117–2125 (2017)

    Google Scholar 

  20. Liu, B., Gould, S., Koller, D.: Single image depth estimation from predicted semantic labels. In: CVPR, pp. 1253–1260 (2010)

    Google Scholar 

  21. Liu, F., Shen, C., Lin, G.: Deep convolutional neural fields for depth estimation from a single image. In: CVPR, pp. 5162–5170 (2015)

    Google Scholar 

  22. Liu, M., Salzmann, M., He, X.: Discrete-continuous depth estimation from a single image. In: CVPR, pp. 716–723 (2014)

    Google Scholar 

  23. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  24. Qi, X., Liao, R., Liu, Z., Urtasun, R., Jia, J.: GeoNet: geometric neural network for joint depth and surface normal estimation. In: CVPR, pp. 283–291 (2018)

    Google Scholar 

  25. Rad, M.S., Bozorgtabar, B., Marti, U.V., Basler, M., Ekenel, H.K., Thiran, J.P.: SROBB: targeted perceptual loss for single image super-resolution. In: ICCV, pp. 2710–2719 (2019)

    Google Scholar 

  26. Saxena, A., Sun, M., Ng, A.Y.: Make3D: learning 3D scene structure from a single still image. TPAMI 31(5), 824–840 (2008)

    Article  Google Scholar 

  27. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  28. Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convolutional networks. In: ICCV, pp. 3119–3127 (2015)

    Google Scholar 

  29. Wang, L., et al.: DeepLens: shallow depth of field from a single image. ACM Trans. Graph. 37(6), 245:1–245:11 (2018)

    Google Scholar 

  30. Wang, L., Zhang, J., Wang, O., Lin, Z., Lu, H.: SDC-Depth: semantic divide-and-conquer network for monocular depth estimation. In: CVPR, June 2020

    Google Scholar 

  31. Watson, J., Firman, M., Brostow, G.J., Turmukhambetov, D.: Self-supervised monocular depth hints. In: ICCV, pp. 2162–2171 (2019)

    Google Scholar 

  32. Xian, K., et al.: Monocular relative depth perception with web stereo data supervision. In: CVPR, pp. 311–320 (2018)

    Google Scholar 

  33. Xu, D., Ouyang, W., Wang, X., Sebe, N.: PAD-Net: multi-tasks guided prediction-and-distillation network for simultaneous depth estimation and scene parsing. In: CVPR, pp. 675–684 (2018)

    Google Scholar 

  34. Xu, D., Wang, W., Tang, H., Liu, H., Sebe, N., Ricci, E.: Structured attention guided convolutional neural fields for monocular depth estimation. In: CVPR, pp. 3917–3925 (2018)

    Google Scholar 

  35. Zhi, S., Bloesch, M., Leutenegger, S., Davison, A.J.: SceneCode: monocular dense semantic reconstruction using learned encoded scene representations. In: CVPR, pp. 11776–11785 (2019)

    Google Scholar 

Download references

Acknowledgements

This work is supported by National Key R&D Program of China (2018AAA0102001), National Natural Science Foundation of China (61725202, U1903215, 61829102, 91538201, 61771088, 61751212, 61906031), Fundamental Research Funds for the Central Universities (DUT19GJ201), Dalian Innovation Leader’s Support Plan (2018RD07), China Postdoctoral Science Foundation (2019M661095), National Postdoctoral Program for Innovative Talent (BX20190055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifan Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 7297 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, L., Zhang, J., Wang, Y., Lu, H., Ruan, X. (2020). CLIFFNet for Monocular Depth Estimation with Hierarchical Embedding Loss. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12350. Springer, Cham. https://doi.org/10.1007/978-3-030-58558-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58558-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58557-0

  • Online ISBN: 978-3-030-58558-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics