Skip to main content

WeightNet: Revisiting the Design Space of Weight Networks

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

We present a conceptually simple, flexible and effective framework for weight generating networks. Our approach is general that unifies two current distinct and extremely effective SENet and CondConv into the same framework on weight space. The method, called WeightNet, generalizes the two methods by simply adding one more grouped fully-connected layer to the attention activation layer. We use the WeightNet, composed entirely of (grouped) fully-connected layers, to directly output the convolutional weight. WeightNet is easy and memory-conserving to train, on the kernel space instead of the feature space. Because of the flexibility, our method outperforms existing approaches on both ImageNet and COCO detection tasks, achieving better Accuracy-FLOPs and Accuracy-Parameter trade-offs. The framework on the flexible weight space has the potential to further improve the performance. Code is available at https://github.com/megvii-model/WeightNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  2. Cao, Y., Xu, J., Lin, S., Wei, F., Hu, H.: GCNET: non-local networks meet squeeze-excitation networks and beyond. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  3. Chen, Z., Li, Y., Bengio, S., Si, S.: GaterNet: dynamic filter selection in convolutional neural network via a dedicated global gating network. arXiv preprint arXiv:1811.11205 (2018)

  4. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

    Google Scholar 

  5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  6. Ha, D., Dai, A., Le, Q.V.: Hypernetworks. arXiv preprint arXiv:1609.09106 (2016)

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012)

  9. Howard, A., et al.: Searching for mobilenetv3. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1314–1324 (2019)

    Google Scholar 

  10. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  11. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  12. Huang, G., Chen, D., Li, T., Wu, F., van der Maaten, L., Weinberger, K.Q.: Multi-scale dense networks for resource efficient image classification. arXiv preprint arXiv:1703.09844 (2017)

  13. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, pp. 2017–2025 (2015)

    Google Scholar 

  14. Jia, X., De Brabandere, B., Tuytelaars, T., Gool, L.V.: Dynamic filter networks. In: Advances in Neural Information Processing Systems, pp. 667–675 (2016)

    Google Scholar 

  15. Keskin, C., Izadi, S.: SplineNets: continuous neural decision graphs. In: Advances in Neural Information Processing Systems, pp. 1994–2004 (2018)

    Google Scholar 

  16. Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 510–519 (2019)

    Google Scholar 

  17. Lin, J., Rao, Y., Lu, J., Zhou, J.: Runtime neural pruning. In: Advances in Neural Information Processing Systems, pp. 2181–2191 (2017)

    Google Scholar 

  18. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  19. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  20. Liu, L., Deng, J.: Dynamic deep neural networks: optimizing accuracy-efficiency trade-offs by selective execution. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  21. Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025 (2015)

  22. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: Shufflenet v2: practical guidelines for efficient CNN architecture design. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 116–131 (2018)

    Google Scholar 

  23. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)

    MATH  Google Scholar 

  24. Munkhdalai, T., Yu, H.: Meta networks. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 2554–2563. JMLR. org (2017)

    Google Scholar 

  25. Platanios, E.A., Sachan, M., Neubig, G., Mitchell, T.: Contextual parameter generation for universal neural machine translation. arXiv preprint arXiv:1808.08493 (2018)

  26. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  27. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  28. Schmidhuber, J.: Learning to control fast-weight memories: an alternative to dynamic recurrent networks. Neural Comput. 4(1), 131–139 (1992)

    Article  Google Scholar 

  29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  30. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  31. Tan, M., et al.: MnasNet: platform-aware neural architecture search for mobile. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2820–2828 (2019)

    Google Scholar 

  32. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. arXiv preprint arXiv:1905.11946 (2019)

  33. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  34. Wang, F., et al.: Residual attention network for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2017)

    Google Scholar 

  35. Wang, X., Yu, F., Dou, Z.Y., Darrell, T., Gonzalez, J.E.: SkipNet: learning dynamic routing in convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 409–424 (2018)

    Google Scholar 

  36. Woo, S., Park, J., Lee, J.Y., So Kweon, I.: CBAM: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  37. Wu, Z., et al.: BlockDrop: dynamic inference paths in residual networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8817–8826 (2018)

    Google Scholar 

  38. Yang, B., Bender, G., Le, Q.V., Ngiam, J.: CondConv: conditionally parameterized convolutions for efficient inference. In: Advances in Neural Information Processing Systems, pp. 1305–1316 (2019)

    Google Scholar 

  39. Yu, J., Yang, L., Xu, N., Yang, J., Huang, T.: Slimmable neural networks. arXiv preprint arXiv:1812.08928 (2018)

  40. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

    Google Scholar 

Download references

Acknowledgements

This work is supported by The National Key Research and Development Program of China (No. 2017YFA0700800) and Beijing Academy of Artificial Intelligence (BAAI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyu Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, N., Zhang, X., Huang, J., Sun, J. (2020). WeightNet: Revisiting the Design Space of Weight Networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12360. Springer, Cham. https://doi.org/10.1007/978-3-030-58555-6_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58555-6_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58554-9

  • Online ISBN: 978-3-030-58555-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics