Advertisement

Generate to Adapt: Resolution Adaption Network for Surveillance Face Recognition

Conference paper
  • 540 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12360)

Abstract

Although deep learning techniques have largely improved face recognition, unconstrained surveillance face recognition is still an unsolved challenge, due to the limited training data and the gap of domain distribution. Previous methods mostly match low-resolution and high-resolution faces in different domains, which tend to deteriorate the original feature space in the common recognition scenarios. To avoid this problem, we propose resolution adaption network (RAN) which contains Multi-Resolution Generative Adversarial Networks (MR-GAN) followed by a feature adaption network. MR-GAN learns multi-resolution representations and randomly selects one resolution to generate realistic low-resolution (LR) faces that can avoid the artifacts of down-sampled faces. A novel feature adaption network with translation gate is developed to fuse the discriminative information of LR faces into backbone network, while preserving the discrimination ability of original face representations. The experimental results on IJB-C TinyFace, SCface, QMUL-SurvFace datasets have demonstrated the superiority of our method compared with state-of-the-art surveillance face recognition methods, while showing stable performance on the common recognition scenarios.

Keywords

Surveillance face recognition Generative adversarial networks Feature adaption 

Supplementary material

504470_1_En_44_MOESM1_ESM.pdf (1.5 mb)
Supplementary material 1 (pdf 1506 KB)

References

  1. 1.
    Ataer-Cansizoglu, E., Jones, M., Zhang, Z., Sullivan, A.: Verification of very low-resolution faces using an identity-preserving deep face super-resolution network. arXiv preprint arXiv:1903.10974 (2019)
  2. 2.
    Bulat, A., Tzimiropoulos, G.: Super-fan: integrated facial landmark localization and super-resolution of real-world low resolution faces in arbitrary poses with gans. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 109–117 (2018)Google Scholar
  3. 3.
    Bulat, A., Yang, J., Tzimiropoulos, G.: To learn image super-resolution, use a gan to learn how to do image degradation first. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 185–200 (2018)Google Scholar
  4. 4.
    Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2:: a dataset for recognising faces across pose and age. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 67–74. IEEE (2018)Google Scholar
  5. 5.
    Chaitanya Mynepalli, S., Hu, P., Ramanan, D.: Recognizing tiny faces. In: Proceedings of the IEEE International Conference on Computer Vision Workshops. pp. 0–0 (2019)Google Scholar
  6. 6.
    Chen, S., Liu, Y., Gao, X., Han, Z.: MobileFaceNets: efficient CNNs for accurate real-time face verification on mobile devices. In: Zhou, J., et al. (eds.) CCBR 2018. LNCS, vol. 10996, pp. 428–438. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-97909-0_46CrossRefGoogle Scholar
  7. 7.
    Chen, W., Chen, X., Zhang, J., Huang, K.: Beyond triplet loss: a deep quadruplet network for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 403–412 (2017)Google Scholar
  8. 8.
    Chen, Y., Tai, Y., Liu, X., Shen, C., Yang, J.: FSRNet: end-to-end learning face super-resolution with facial priors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2492–2501 (2018)Google Scholar
  9. 9.
    Cheng, Z., Zhu, X., Gong, S.: Surveillance face recognition challenge. arXiv preprint arXiv:1804.09691 (2018)
  10. 10.
    Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2019)Google Scholar
  11. 11.
    Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10593-2_13CrossRefGoogle Scholar
  12. 12.
    Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 391–407. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46475-6_25CrossRefGoogle Scholar
  13. 13.
    Ge, S., Zhao, S., Li, C., Li, J.: Low-resolution face recognition in the wild via selective knowledge distillation. IEEE Trans. Image Process. 28(4), 2051–2062 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ghosh, S., Singh, R., Vatsa, M.: On learning density aware embeddings. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4884–4892 (2019)Google Scholar
  15. 15.
    Grgic, M., Delac, K., Grgic, S.: SCface-surveillance cameras face database. Multimed. Tools Appl. 51(3), 863–879 (2011)CrossRefGoogle Scholar
  16. 16.
    Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 87–102. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46487-9_6CrossRefGoogle Scholar
  17. 17.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778 (2016)Google Scholar
  18. 18.
    Hennings-Yeomans, P.H., Baker, S., Kumar, B.V.: Simultaneous super-resolution and feature extraction for recognition of low-resolution faces. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)Google Scholar
  19. 19.
    Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)Google Scholar
  20. 20.
    Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)Google Scholar
  21. 21.
    Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments (2008)Google Scholar
  22. 22.
    Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)Google Scholar
  23. 23.
    Kumar, A., Chellappa, R.: Landmark detection in low resolution faces with semi-supervised learning. arXiv preprint arXiv:1907.13255 (2019)
  24. 24.
    Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Deep laplacian pyramid networks for fast and accurate super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 624–632 (2017)Google Scholar
  25. 25.
    Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: SphereFace: deep hypersphere embedding for face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 212–220 (2017)Google Scholar
  26. 26.
    Liu, X., Song, L., Wu, X., Tan, T.: Transferring deep representation for nir-vis heterogeneous face recognition. In: 2016 International Conference on Biometrics (ICB), pp. 1–8. IEEE (2016)Google Scholar
  27. 27.
    Lu, Z., Jiang, X., Kot, A.: Deep coupled resnet for low-resolution face recognition. IEEE Signal Process. Lett. 25(4), 526–530 (2018)CrossRefGoogle Scholar
  28. 28.
    Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2794–2802 (2017)Google Scholar
  29. 29.
    Maze, B., et al.: IARPA Janus benchmark-C: face dataset and protocol. In: 2018 International Conference on Biometrics (ICB), pp. 158–165. IEEE (2018)Google Scholar
  30. 30.
    Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J., Kotsia, I., Zafeiriou, S.: AgeDB: the first manually collected, in-the-wild age database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 51–59 (2017)Google Scholar
  31. 31.
    Parkhi, O.M., et al.: Deep face recognition. In: bmvc, vol. 1, p. 6 (2015)Google Scholar
  32. 32.
    Sankaranarayanan, S., Balaji, Y., Castillo, C.D., Chellappa, R.: Generate to adapt: aligning domains using generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8503–8512 (2018)Google Scholar
  33. 33.
    Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)Google Scholar
  34. 34.
    Sengupta, S., Chen, J.C., Castillo, C., Patel, V.M., Chellappa, R., Jacobs, D.W.: Frontal to profile face verification in the wild. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1–9. IEEE (2016)Google Scholar
  35. 35.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
  36. 36.
    Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. arXiv preprint arXiv:1902.09212 (2019)
  37. 37.
    Sun, Y., Chen, Y., Wang, X., Tang, X.: Deep learning face representation by joint identification-verification. In: Advances in Neural Information Processing Systems, pp. 1988–1996 (2014)Google Scholar
  38. 38.
    Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3147–3155 (2017)Google Scholar
  39. 39.
    Wang, H., et al.: CosFace: large margin cosine loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5265–5274 (2018)Google Scholar
  40. 40.
    Wang, M., Deng, W.: Deep visual domain adaptation: a survey. Neurocomputing 312, 135–153 (2018)CrossRefGoogle Scholar
  41. 41.
    Yang, F., Yang, W., Gao, R., Liao, Q.: Discriminative multidimensional scaling for low-resolution face recognition. IEEE Signal Process. Lett. 25(3), 388–392 (2017)CrossRefGoogle Scholar
  42. 42.
    Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning face representation from scratch. arXiv preprint arXiv:1411.7923 (2014)
  43. 43.
    Yu, X., Fernando, B., Hartley, R., Porikli, F.: Super-resolving very low-resolution face images with supplementary attributes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 908–917 (2018)Google Scholar
  44. 44.
    Zangeneh, E., Rahmati, M., Mohsenzadeh, Y.: Low resolution face recognition using a two-branch deep convolutional neural network architecture. Exp. Syst. Appl. 139, 112854 (2020)CrossRefGoogle Scholar
  45. 45.
    Zeng, D., Chen, H., Zhao, Q.: Towards resolution invariant face recognition in uncontrolled scenarios. In: 2016 International Conference on Biometrics (ICB), pp. 1–8. IEEE (2016)Google Scholar
  46. 46.
    Zha, J., Chao, H.: TCN: Transferable coupled network for cross-resolution face recognition. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3302–3306. IEEE (2019)Google Scholar
  47. 47.
    Zhang, K., et al.: Super-identity convolutional neural network for face hallucination. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 183–198 (2018)Google Scholar
  48. 48.
    Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)CrossRefGoogle Scholar
  49. 49.
    Zhang, X., Zhao, R., Qiao, Y., Wang, X., Li, H.: AdaCos: adaptively scaling cosine logits for effectively learning deep face representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10823–10832 (2019)Google Scholar
  50. 50.
    Zhang, Y., et al.: Global-local GCN: Large-scale label noise cleansing for face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7731–7740 (2020)Google Scholar
  51. 51.
    Zhao, K., Xu, J., Cheng, M.M.: RegularFace: deep face recognition via exclusive regularization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1136–1144 (2019)Google Scholar
  52. 52.
    Zheng, T., Deng, W.: Cross-pose LFW: a database for studying crosspose face recognition in unconstrained environments. Beijing University of Posts and Telecommunications, Technical Report, p. 18-01 (2018)Google Scholar
  53. 53.
    Zheng, T., Deng, W., Hu, J.: Cross-age LFW: a database for studying cross-age face recognition in unconstrained environments. arXiv preprint arXiv:1708.08197 (2017)
  54. 54.
    Zhou, C., Zhang, Z., Yi, D., Lei, Z., Li, S.Z.: Low-resolution face recognition via simultaneous discriminant analysis. In: 2011 International Joint Conference on Biometrics (IJCB), pp. 1–6. IEEE (2011)Google Scholar
  55. 55.
    Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Beijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations